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ABSTRACT

The human visual system is capable of rapid response, even in the presence of massive quantities of
visual information. This is possible because it restricts the operation of further processing stages to
a small, potentially important, subset of the incoming information. This mechanism is called visual
attention and is drawn by distinctive, visually salient, regions of the scene. Detection of visually
salient regions is widely employed in vision-based applications, since a reduction in visual search
space can lead to significant improvement in computational performance. Despite recent advances
in salient region detection, most efforts have focused on improving accuracy, at the expense of in-
creased execution time, significantly hindering their applicability. To address this, a fast and accurate
salient region detection method is presented in this work, based on an efficient saliency estimate called
random color distance map. This estimate is joint upsampled into an accurate saliency map, which
is assessed and compared to saliency maps obtained by other four state-of-the-art methods on the
MSRA1K, MSRA10K and SED2 datasets, showing that it is highly competitive in both accuracy and
execution time.

c© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

As a consequence of its limited processing capacity, the
human visual system employs a mechanism that reduces the
amount of incoming visual information that is effectively pro-
cessed. This mechanism, visual attention, restricts the activ-
ity of further cognitive processes to a small, potentially impor-
tant, subset of the observed scene, significantly decreasing their
burden (Wolfe, 1994; Frintrop, 2006). The usefulness of such
mechanism is not restricted to the human visual system – any
vision-based system can benefit from this selective reduction of
information. For this reason, it has been extensively explored in
computational applications such as image compression (Ouer-
hani et al., 2001), content-based image retrieval (Marques et al.,
2006), visual novelty detection (Vieira Neto, 2011) and object
detection (Silva et al., 2014).

Empirical evidence indicates that visual attention is drawn to
distinctive regions of the observed scene (Treisman and Gelade,
1980; Elazary and Itti, 2008). While significantly more com-
plex processes are involved during extended and task-related
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Fig. 1: Fast salient region detection. An efficient saliency estimate is computed
as a sparse, downsampled, random color distance map. The result is joint up-
sampled into an accurate full-resolution saliency map, taking only a fraction of
the time it would require to compute it using densely-sampled color distances
on the full-resolution input.



2

viewing (Theeuwes, 2010), stimulus-driven distinctiveness –
visual saliency – is known to model the early stages of visual
attention with high accuracy. Despite its short duration, the
early stages of visual attention have a very significant impact
on vision-based applications. Moreover, since it is stimulus-
driven, instead of task-driven like later visual attention stages,
it is also less subjective and more generally applicable, con-
sequently, most research on computational visual attention has
been dedicated to visual saliency detection.

Despite the high accuracy of modern saliency detection
methods, their complexity makes many of them inadequate for
real-time applications. Saliency detection has been reported to
take less than 150 ms in the human visual system (Theeuwes,
2010) while, for instance, among the most accurate methods
in the most extensive benchmark available to date (Borji et al.,
2015), there are methods that take several seconds to process a
single image with 400 × 300 pixels on a Xeon E5645 2.4 GHz
CPU with 8 GB RAM. This work addresses this issue by pre-
senting a salient region detection method based on the concept
of a random color distance map, which is a bottom-up, unsu-
pervised, and computationally efficient approach to saliency es-
timation. While this estimate itself is not adequate for salient
region detection, it can be made so when combined with joint
upsampling, resulting in computationally efficient, accurate,
saliency maps (Figure 1).

The main contributions of this paper are: (i) showing that the
color uniqueness of a pixel can be estimated with linear com-
putation time, as the accumulated color distance to a small set
of pixels randomly sampled from the scene; (ii) demonstrat-
ing that the proposed estimate can be joint-upsampled for ef-
ficient salient region detection, with competitive accuracy in
comparison to state-of-the-art methods; (iii) an assessment of
the data reduction parameters of the proposed model, showing
that the amount of data necessary for salient region detection
can be drastically reduced, substantially reducing execution
time, without significant decrease in accuracy. The proposed
method is assessed and compared to other four state-of-the-art
saliency detection methods on the MSRA1K, MSRA10K and
SED2 datasets in terms of precision, recall, F-measure and exe-
cution time. The results show that it is highly competitive with
state-of-the-art methods, presenting one of the best trade-offs
between accuracy and execution time.

This paper extends the results presented by Lie et al. (2016),
providing more detailed descriptions and experiments, in addi-
tion to improvements to the method itself. In particular, exe-
cution time was significantly improved without noticeable im-
pact on accuracy, by restricting the RGB to CIELAB colorspace
conversion to the downsampled version of the input image in-
stead of the full-resolution input itself. Furthermore, accuracy
was also significantly improved, with practically no additional
computational cost, by adopting background prior information,
which is shown to be trivial to be incorporated in the method.

2. Related Work

Despite the variety of computational approaches for visual
saliency estimation, their formulations are mostly based on the

framework proposed by Koch and Ullman (1987), in which dif-
ferences of low-level features are combined into a topological
representation of relative conspicuity in the scene, a saliency
map. This role of feature combination in selective attention is
grounded mainly on the psychological experiments by Treis-
man and Gelade (1980), which show that, in human visual at-
tention, low-level features are registered simultaneously at an
early stage, and only later combined to identify individual ob-
jects. While empirical evidence indicates that a series of low-
level features is involved in this process (Braun and Julesz,
1998), the high accuracy of most recent computational mod-
els suggest that color may be the most informative feature in
natural images (Borji et al., 2015).

The most straightforward approach to estimate the saliency
of an image location in terms of color is to compute its color dis-
tance to all other image locations. This is reasonable as long as
the image is represented in a perceptually uniform colorspace,
that is, a colorspace in which the Euclidean distance approxi-
mates perceptual difference (Reinhard et al., 2008). For an im-
age I, Zhai and Shah (2006) formulated the saliency S (x, y) of
each pixel I(x, y) in this approach as defined in Equation 1:

S (x, y) =
∑

(xi, yi) ∈ P

||I(x, y) − I(xi, yi)||, (1)

where P is the set of all pixel locations in I. In other words, the
saliency of a pixel is defined as its accumulated color distance
to all other pixels in the image. Although straightforward, this
approach has O(N2) computational complexity for an image
with N pixels, resulting in a poor solution for real-time applica-
tions. To reduce computational burden, Zhai and Shah (2006)
proposed estimating the saliency of each color instead, which
can improve performance if there are significantly more pixels
than colors in the image, since simply assigning a precomputed
color saliency to each pixel results in linear complexity. How-
ever, having more pixels than possible colors in an image is
rarely the case – for instance, while a 1920 × 1080 true-color
image has around 2 million pixels, it has over 16 million col-
ors. Considering this, the approach is restricted to luminance
information, losing the distinctiveness of color information but
significantly improving computational performance, since the
number of operations is quadratic with respect of the number of
values. A strategy to improve the computational performance
of this approach, without completely sacrificing color informa-
tion, was presented by Cheng et al. (2015). Histogram-based
color quantization is employed, followed by a selection of the
most frequent remaining colors, in order to reduce their number
to 85 – a very significant improvement over the luminance ap-
proach. In practice, the luminance approach is still faster, since
it avoids the overhead of histogram quantization and conversion
to a perceptually uniform colorspace, but the color quantization
approach predicts salient regions much more accurately while
achieving competitive speed (Borji et al., 2015).

An altogether different approach to estimate saliency effi-
ciently, in terms of color distinctiveness, is to compare each
pixel to a color summary of the image. This approach was
adopted by Achanta et al. (2009), who defined the saliency
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Original Ground-truth NR = 1 NR = 1000NR = 100NR = 10

Fig. 2: Saliency estimation for different sizes NR of the random set Prand . Increasing NR sharpens the output, but for values as small as NR = 1, the salient region is
already evident.

S (x, y) of a pixel I(x, y) as given in Equation 2:

S (x, y) = ||I(x, y) − IG ||, (2)

where IG denotes the average color of the Gaussian filtered in-
put I. This method is computationally efficient, since it has
O(N) complexity and computing the average color of I, as well
as its Gaussian filtering, can also be performed very efficiently.

An intermediate approach, which does not require compari-
son to all pixels of the input, but also does not summarize their
color in a single value, is the stochastic method by Vikram
(2013), in which color distances are computed for randomy
sampled pairs of pixels. Random pairs are resampled and com-
pared until an empirically determined number of iterations is
reached. This method is largely based on a previous and more
general approach by Stentiford (2007), which does not sample
random pairs of pixels but pairs of randomly shaped templates.
Motivated by the random scattering of receptive fields in the
human visual system, Vikram et al. (2012) devised a method
which estimates the saliency of a pixel as the difference of its
value to the mean value of the randomly generated windows
that contain it. These windows have random positions and sizes,
while their number was determined empirically as 0.02·N for an
image with N pixels.

3. Random Color Distance Map

The proposed method follows a stochastic approach, with a
significant distinction with respect to the previously mentioned
stochastic saliency detection methods – its purpose is not to
be more biologically plausible, but to improve computational
performance. Random sampling is used solely to obtain a rep-
resentative color summary for the image, so that saliency can
be estimated more efficiently than comparing each pixel to all
others and more robustly than comparing only to the average
color of the image. Considering this, for an image I, which
is converted from the RGB colorspace to CIELAB, in order to
leverage its perceptual uniformity, the saliency S (x, y) of the
pixel I(x, y) is estimated as defined by Equation 3:

S (x, y) =
∑

(xr , yr) ∈ Prand

||I(x, y) − I(xr, yr)||, (3)

where Prand is a set of NR random pixel locations in I. Equa-
tion 3 is essentially the same as Equation 1, but instead of a
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Fig. 3: Mean absolute error and execution time for random color distance map
computation. Despite already being reasonably small, error decays exponen-
tially as NR is increased. As expected, execution time increases linearly. How-
ever, for NR = 100, it already exceeds one second, showing that adopting large
values for NR is not an efficient approach to increase accuracy. The algorithm
was computed for the example in Figure 2 (which has 345 × 400 pixels), on an
Intel Core i7-860 2.80 GHz CPU with 4 GB RAM.

sum across the entire image, only a subset of pixels at posi-
tions (xr, yr), ∀ r ∈ [1 ..NR] is adopted instead, where each co-
ordinate is randomly sampled from a discrete uniform distri-
bution in the interval [1 .. L], L being the image width for xr

and height for yr.
The premise of this approach is that a random set of pixels

provides an adequate summary of the entire image in terms of
color, which tends to be true as the set size NR is increased. Our
interest, however, is in the particular case when NR is small with
respect to the entire image, since in this case it can be sampled
with minimal computational effort, providing an efficient color
summary. The question is whether this summary is still repre-
sentative when the set size is small. This seems to be the case,
as illustrated by the example in Figure 2, which shows that the
salient region is already evident even when NR assumes very
small values, despite presenting a noisy aspect.

This is illustrated more precisely in Figure 3 (top), which
shows the mean absolute error of saliency estimation for differ-
ent values of NR, considering the input image and ground-truth
depicted in Figure 2. Error decays exponentially as set size in-
creases, despite being reasonably small even for small values
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of NR. However, increasing set size is not a computationally
efficient solution. As Figure 3 (bottom) illustrates, even for
medium sized images (e.g. 345 × 400), the set size required
to successfully “denoise” the output image is computationally
prohibitive for real-time applications.

The result of Equation 3 over an input image is called a ran-
dom color distance map. While, for a small NR, it does not
result in an adequate saliency map for salient region detection,
it can be made so when combined with image abstraction, since
this lessens the impact of pixel level inaccuracies via region-
level processing. As it turns out, this combination not only re-
sults in accurate saliency maps, but it is also computationally
efficient, since there are several fast image abstraction meth-
ods in the literature (Gastal and Oliveira, 2011; He et al., 2013;
Min et al., 2014) and, when combined with such methods, NR

can assume very small values without significant decrease in
accuracy.

Moreover, due to its simplicity, extending the random color
distance map is straightforward. For instance, background
prior, the assumption that image boundaries belong to the back-
ground, can be incorporated in the model simply by restricting
the sampling of Prand to the image boundaries. In other words,
for each pixel location (xr, yr), instead of randomly sampling
the coordinates xr and yr from the interval [1 .. L], they are ran-
domly sampled from [1 .. BL] ∪ [(L − BL) .. L], where L is the
image width for xr and height for yr, while B is the boundary
ratio, a parameter which defines the proportion of the image
dimensions to adopt as boundary size for the prior. Adopting
B = 0.5 disregards boundary prior, since it indicates that two
opposing boundaries take half of the image each, setting the
entire image as boundary. In the benchmark by Borji et al.
(2015), it was shown that the six most accurate salient region
detection methods adopted boundary prior, suggesting that it is
a significant factor in state-of-the-art accuracy. In Section 5, it
is shown that this is indeed the case, as the accuracy of the pro-
posed method is significantly improved by adopting this prior –
with practically no additional computational cost.

4. Joint Upsampling

Most of recent saliency detection methods are region-based,
meaning that instead of performing pixelwise saliency estima-
tion, they estimate the saliency of image patches. These patches
are obtained using image abstraction methods, which decom-
pose the image into perceptually homogeneous regions (Cheng
et al., 2013). Salient object detection using this approach is
usually more accurate and scales better (Cheng et al., 2015).

Based on the salient region detectors considered in the ex-
tensive survey by Borji et al. (2014), the most common image
abstraction methods are the graph-based segmentation (EGBS)
by Felzenszwalb and Huttenlocher (2004), SLIC superpixels
(Achanta et al., 2012), and Mean Shift (Comaniciu and Meer,
2002). However, these methods are too computationally ex-
pensive to incorporate into a fast saliency detector. Instead, an
edge-preserving smoothing filter was adopted here for image
abstraction – the Fast Global Smoother (FGS) by Min et al.
(2014). While there are several edge-preserving filters in the

Table 1: Execution time of image abstraction algorithms. FGS has the shortest
execution time, less than half of the time taken by the second fastest algorithm
(SLIC). The algorithms were executed using their default parameters, using an
input image with 400 × 300 pixels, on an Intel Core i7-860 2.80 GHz CPU with
4 GB RAM.

Method Mean shift EGBS SLIC FGS
Execution time (s) 0.90 0.13 0.11 0.04

literature (Tomasi and Manduchi, 1998; Gastal and Oliveira,
2011; He et al., 2013), FGS was chosen because it presents
linear complexity, short execution time and ease of parameteri-
zation. Table 1 shows the execution time of the image abstrac-
tion methods mentioned. The source code from the original
authors was used in the experiments whose results are reported,
except in the case of Mean Shift, which was assessed using the
EDISON (Christoudias et al., 2002) implementation, since it is
commonly used in saliency detectors.

An edge-preserving smoothing filter removes image details
without blurring edges. This kind of filter blurs the image like
an usual Gaussian low-pass filter, but has its effect “weighted
down” near edges. This is accomplished by filtering in both
space and range, meaning that the output of the filter depends
not only on the geometric closeness of the pixels in its support,
but also on their photometric similarity (Tomasi and Manduchi,
1998). FGS (Min et al., 2014) formulates this as an optimiza-
tion framework, which is approximated as a sequence of 1D
subsystems, one for each row/column, that minimizes the en-
ergy function presented in Equation 4:

J(u) =
∑

n

(
(un − fn)2 + λ

∑
i ∈N(n)

wn,i (g)(un − ui)2
)
, (4)

where f , g and u are rows/columns of the input, guide and out-
put images, respectively. The function J(u) is computed along
n ∈ [1 .. L], where L corresponds to the width of the image if
the input is a row or height if it is a column. N is a set that con-
tains the two neighbors of n, λ is the smoothness parameter,
and wn,i(g) is a function that determines the similarity between
pixels n and i in the image g, and is defined in Equation 5:

wn,i (g) = exp
(
−||gn − gi||

σc

)
, (5)

where σc is the range parameter. In this work, FGS was com-
puted adopting 3 iterations and σc = 0.03, as suggested by Min
et al. (2014), and λ = 102, which was determined empirically.

The formulation described by Equations 4 and 5 considers
two sources of input data, f and g – spatial and range data,
respectively. The same image can be used for both inputs, as in
ordinary edge-preserving smoothing, but not necessarily. For
instance, in image colorization, f can be a color image with
sparse scribbles, whereas g is a grayscale image (Kopf et al.,
2007). While the smoothness component of the filter spreads
the colors from f in space, the range component restricts them
inside the edges of g, resulting in uniform region colorization.

Upsampling a sparse solution using a full-resolution input as
guide image is called joint upsampling. This approach was pop-
ularized by the joint bilateral upsampling (Kopf et al., 2007),
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which is based on the bilateral filter (Tomasi and Manduchi,
1998) and has shown to improve efficiency in tasks such as tone
mapping, colorization and depth from stereo. When a solution
is too costly to be computed in the full-resolution input itself,
joint upsampling can be very advantageous. As shown in Sec-
tion 3, this is the case when computing a dense random color
distance map. Considering this, a sparse random distance map
(NR << N) is computed instead and then joint upsampled into
a full-resolution saliency map. Moreover, since the solution is
upsampled, its execution time can be further improved by com-
puting it in a downsampled copy of the input. While downsiz-
ing degrades region contours and texture information, the for-
mer is corrected by joint upsampling with the full-resolution
input as guide image, while the latter actually improves accu-
racy, since the purpose of salient region detection is detecting
homogeneous regions, not the details inside them (Borji et al.,
2014). As it turns out, accuracy does not decrease significantly
even within a wide range of downsampling scales, allowing a
very significant reduction of the amount of processed data.

Execution time can also be improved by performing the RGB
to CIELAB colorspace conversion in the downsampled version,
rather than in the full-resolution input image, since it is only
needed for perceptually uniform color distance computation.
As consequence, the joint upsampling is guided by the edges
of the input image in the RGB colorspace. While edges in the
CIELAB colorspace might be more perceptually meaningful,
this conversion significantly increases execution time without
perceptible increase in accuracy. The joint upsampled random
color distance map is also subject to gamma-correction (γ = 3)
to suppress occasional noise in the background.

5. Experiments

The proposed method was assessed and compared to four
state-of-the-art saliency detection methods: Frequency-tuned
(FT) (Achanta et al., 2009), Spectral Residual (SR) (Hou and
Zhang, 2007), Random Center Surround (RCS) (Vikram et al.,
2012) and Absorbing Markov Chain (AMC) (Jiang et al., 2013).
The criteria for these choices were number of citations (FT
and SR have both more than 1,000 citations each, according to
Google Scholar), similarity to the proposed approach (RCS is
also based on random color distances) and performance (AMC
is the fastest among the most accurate methods in the bench-
mark by Borji et al. (2015)). The experiments were performed
on an Intel Core i7-860 2.80 GHz CPU with 4 GB RAM.

The proposed method was implemented in MATLAB, ex-
cept for the Fast Global Smoother, for which the MEX inter-
face and C++ source code of the original authors (Min et al.,
2014) was used. The implementation languages of the com-
pared methods are the following: AMC (MATLAB, C++), FT
(C++), RCS (MATLAB), SR (MATLAB). The assessment was
based on the source code made publicly available by the authors
of each method.

5.1. Datasets

The experiments were performed on the publicly available
MSRA1K (Achanta et al., 2009), MSRA10K (Cheng et al.,

2015) and SED2 (Alpert et al., 2012) datasets, which provide
accurate object-contour ground-truths indicating regions con-
sistently labeled as salient by human subjects (Cheng et al.,
2015). The two former were sampled from the MSRA Salient
Object Database (Liu et al., 2007) and have an average image
size of 400 × 300 pixels. The MSRA1K dataset contains 1,000
images, while MSRA10K contains 10,000 – despite the exis-
tence of some images common to both, one is not a complete
subset of the other. Following the approach by Cheng et al.
(2015), the experiments are performed on these two datasets to
assess scalability. The SED2 dataset is comprised of 100 im-
ages with average size of approximately 300 × 225 pixels, each
image containing two objects. Following the approach by Borji
et al. (2014), the experiments are also performed on this dataset
to assess accuracy when there is more than a single object in the
scene.

5.2. Metrics
The assessment was based on accuracy and execution time.

Accuracy is measured in terms of precision, recall, and F-
measure, which are standard metrics in salient region detection
assessment (Borji et al., 2014). Precision and recall are defined
in Equation 6:

Precision =
T P

T P + FP
, Recall =

T P
T P + FN

, (6)

where TP (true positives) are salient pixels correctly detected
as such, FN (false positives) are salient pixels detected as back-
ground and FP (false positives) are background pixels detected
as salient. Since saliency maps are usually given in shades
of gray, and these metrics are for binary values, the maps are
thresholded for each value in the [0 .. 255] interval. The accu-
racy of a method on an image is summarized as the precision-
recall curve for all thresholds in this interval, while the accuracy
for an entire dataset is summarized as the average precision-
recall curve for all images.

Besides the precision-recall curve, accuracy can also be sum-
marized by the F-measure, which is the weighted harmonic
mean of precision and recall, as defined in Equation 7:

Fβ = (1 + β2)
Precision × Recall

(β2 × Precision) + Recall
, (7)

where β is used to emphasize the effect of precision or recall.
Since many authors consider precision more important than re-
call for saliency detection, it is common to adopt β2 = 0.3
(Achanta et al., 2009; Li et al., 2013; Cheng et al., 2015).
While the precision-recall curve is computed for all thresholds
in [0..255], F-measure is computed for a single adaptive thresh-
old – twice the average saliency of the image – following the
widely adopted assessment approach by Achanta et al. (2009).

5.3. Parameter assessment
There are three parameters in the computation of the ran-

dom color distance map: set size NR ∈ [1 .. N], downsize scale
D ∈ (0, 1] and boundary ratio B ∈ (0, 0.5]. Each parameter
was assessed by varying its value while the remaining param-
eters were fixed to default values. For D and B, default values
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are straightforward – downsizing and boundary prior can sim-
ply be disabled (D = 1.0, B = 0.5). For NR there is no obvious
default value, so it was determined by analysing accuracy vs.
execution time for several values. As shown in Figure 4 (left),
accuracy improvement due to increasing NR saturates around an
F-measure of 0.64, which is achieved with NR ≈ 20. Adopting
NR > 10 is not cost-effective, since execution time increases
significantly with only marginal accuracy improvement. Con-
sidering this, NR = 10 is adopted as default size for Prand.

Downsize scale has significant impact on execution time and
should be kept as small as possible. As shown in Figure 4
(center), accuracy does not change significantly for a wide
range of scales, remaining with F-measure just below 0.64 for
0.2 ≤ D ≤ 9.0. The lowest accuracy occurs for D = 0.1, fol-
lowed by D = 1.0, suggesting that – for joint upsampling –
estimating saliency in the full-resolution input might actually
hinder accuracy. The downsize scale is therefore set as D = 0.2
since larger values increase execution time without significantly
improving accuracy.

Unlike the previous parameters, boundary ratio has no sig-
nificant impact on execution time – it merely defines the area
from which to sample pixels for color distance computation.
As shown in Figure 4 (right), B = 0.5 (i.e. no boundary prior)
results in the lowest accuracy, indicating that boundary prior
always improves accuracy. The best performance is achieved
with B = 0.2, which results in an accuracy increase of approx-
imately 10% compared to ignoring boundary prior. Note that
formulating boundary prior with random sampling ensures that
the proposed method leverages the fact that boundary regions
might correspond to background, but do not rely on this.

5.4. Quantitative analysis
Precision-recall curves for the compared methods on the

MSRA1K dataset are presented in Figure 5 (left). The proposed
method significantly outperforms all compared methods except
AMC. FT and RCS present similar accuracy, while SR presents
the lowest accuracy by a large margin. An assessment on the
MSRA10K dataset, presented in Figure 5 (center), shows that
almost all methods suffer a decrease in accuracy, the most se-
vere by FT, which is expected, since it is known that pixel-level
methods do not scale as well as region-based methods (Cheng

Table 2: Execution time (for an image with 400 × 300 pixels) and F-measure
of the saliency detection methods assessed. The experiments were executed on
an Intel Core i7-860 2.80 GHz CPU with 4 GB RAM.

Method Execution F-measure
time (s) MSRA1K MSRA10K SED2

AMC 0.1826 0.9059 0.8358 0.7375
Proposed 0.0638 0.7933 0.6956 0.7235
FT 0.0582 0.7070 0.5972 0.6246
RCS 0.7333 0.6607 0.6181 0.5709
SR 0.0090 0.4819 0.4900 0.4299

et al., 2015). RCS suffers a more subtle decrease, probably
due to its saliency maps always emphasizing the image center
(see Figure 7, 5th column), which can increase performance
in datasets with center-bias like MSRA1K and MSRA10K. In
fact, it has been shown that a simple Gaussian blob at the cen-
ter of the image can outperform many salient region detec-
tion methods on datasets with this characteristic (Cheng et al.,
2015). Surprisingly, SR has improved accuracy on the larger
dataset, however, the improvement is marginal and the method
remains the most inaccurate among the assessed. Based on the
precision-recall curve for the SED2 dataset, presented in Fig-
ure 5 (right), the number of objects in the scene does not seem
to be an essential factor in the performance of any of the com-
pared methods, since their relative performance remains simi-
lar to that of the previous datasets. Since SED2 presents sim-
ple scenes with two salient objects, dissimilarity to the average
color of the image correlates reasonably well with saliency and
center-bias is less severe. Consequently, FT outperforms RCS
on this dataset. Despite still outperforming all other methods,
of the three datasets considered, AMC presents its worst per-
formance on SED2. This is very likely due to its difficulty in
detecting small salient regions, as will be discussed later.

Considering execution time, shown in Figure 6 and described
in more detail in Table 2, the proposed method presents one of
the best trade-offs. Compared to FT, it achieves significantly su-
perior accuracy with very similar execution time (it takes an ad-
ditional 0.0056 seconds) while, compared to AMC, it achieves



7

SR

FT
RCS

Proposed
AMC

1

0

0.2

0.4

0.6

0.9
0.8
0.7

0.5

0.3

0.1

0.10 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0.10 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Recall

1

0

0.2

0.4

0.6

0.9
0.8
0.7

0.5

0.3

0.1

P
re

ci
si
on

P
re

ci
si
on

Recall

1

0

0.2

0.4

0.6

0.9
0.8
0.7

0.5

0.3

0.1

P
re

ci
si
on

0.10 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Recall

SR

FT
RCS

Proposed
AMC

SR

FT
RCS

Proposed
AMC

Fig. 5: Precision-recall curves of the compared methods on different datasets. Left: MSRA1K. Center: MSRA10K. Right: SED2. The proposed method is highly
competitive on all three datasets, scaling well in terms of both dataset size and number of objects. From the MSRA1K to the larger MSRA10K dataset, there is
a slight decrease in accuracy for all compared methods, except SR, for which there a slight increase. On the SED2 dataset, the proposed method has accuracy
comparable to AMC and superior to all other methods.
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Fig. 6: F-measure and execution time of the compared methods, sorted by de-
scending accuracy. The proposed method is highly competitive on the three
datasets, being one of the most accurate while remaining one of the fastest. In
terms of accuracy, only AMC is superior. In terms of execution time, SR and FT
are faster, despite none of them being as accurate. While SR is too inaccurate
for salient region detection, FT is significantly less accurate and only 0.0056
seconds faster on average for an image with 400 × 300 pixels.

inferior but competitive accuracy while performing three times
faster. RCS is the slowest method, barely computing a single
saliency map per second, while SR is very fast but too inaccu-
rate for adequate salient region detection.

Despite being the most accurate among the assessed meth-
ods, AMC is also one of the slowest (only RCS is slower). It
adopts a graph-based model with superpixels as nodes (Jiang
et al., 2013), which are computed by the SLIC method (Achanta
et al., 2012). As shown previously in Table 1, SLIC takes
on average 0.11 seconds to compute a single 400 × 300 im-
age. This accounts for more than half of the execution time of
AMC, which corresponds to approximately twice the execution
time of the entire proposed method. SR and FT are the fastest
among the assessed methods. Both have simple and straight-
forward models: the former is a difference in the frequency

domain, while the latter is based on color distances to the av-
erage color of the image. However, while SR relies on heavy
downsampling (i.e. to 64 pixels in width or height) to achieve
reasonable computational performance, but significantly com-
promising accuracy, FT operates on the full-resolution image.
Since FT computes a single difference per pixel, it runs effi-
ciently and in linear time, despite being slower than SR. The
long execution time by RCS can be attributed to the large num-
ber of sub-windows involved in its computation: 0.02 × N for
an image with N pixels, which generates 2,400 windows for a
single 400 × 300 image.

5.5. Qualitative analysis
Saliency maps computed using the compared methods are

presented in Figure 7, ordered from left to right by decreas-
ing accuracy. AMC outputs the most homogeneous saliency
maps, since it assigns a single saliency value for each super-
pixel. For uncluttered images with high contrast salient re-
gions, it outputs mostly binary saliency maps, closely resem-
bling the ground-truth. The proposed method outputs similarly
homogeneous regions, despite not suppressing details as well.
This is mostly a consequence of the different image abstraction
approaches adopted by each method. While SLIC superpix-
els output discrete labeled segments, the Fast Global Smoother
is simply a low-pass filter sensitive to photometric similarity,
which makes it susceptible to sharp details in salient regions.
Considering that the effect of such details is mostly a slight
decrease in homogeneity, adopting the Fast Global Smoother
offers a good compromise, since it allows detecting salient re-
gions three times faster. Another advantage of avoiding super-
pixel computation is that there is no need to specify the number
or size of the superpixels. Adopting inadequate values for these
parameters can have significant impact on detection accuracy,
for instance, when the salient region is smaller than the super-
pixel size, as illustrated by the example in Figure 7 (second
row). It is possible to mitigate that by computing superpixels
on multiple scales (Tong et al., 2014), but this is not adequate
for fast salient region detection, since it significantly increases
execution time.

As mentioned previously, RCS overemphasizes the image
center. In some cases, such as the saliency maps in the 4th,



8

Input Ground-truth AMC Proposed FTRCS SR

Fig. 7: Saliency maps computed using the compared methods, ordered from left to right by decreasing accuracy. AMC outputs the most homogeneous saliency
maps, since it assigns a single value for each superpixel. However, it presents difficulties detecting small salient objects. The proposed method outputs similarly
homogeneous regions, despite not suppressing details as well. RCS overemphasizes the center of the image, resulting in good accuracy on center-biased datasets
but not necessarily by detecting salient regions. FT outputs sharp, accurate saliency maps, but is susceptible to small distractors in the background, due to its
fine-grained approach. SR produces inaccurate, low-resolution, saliency maps, which might be useful for rough localization but are not adequate for salient region
detection. The last two rows present failure cases of our method, which demonstrate that its limitations are also shared by some of the compared methods.
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5th and 7th rows of Figure 7, it is possible to notice that the
salient regions in the output are barely distinguishable from the
background, but still manage to have significant overlap with
the ground-truth simply because they emphasize the center of
the image. FT adopts a fine-grained approach, capable of out-
putting sharp saliency maps with accurate boundaries. How-
ever, since it does not include any image abstraction method, it
is susceptible to small distractors in the background. Addition-
ally, in cases such as the 4th row of Figure 7, in which there
are multiple regions with similar size and different colors, the
method may fail since distance to the average color of the im-
age will not be a good estimate of saliency. SR produces very
inaccurate, low-resolution, saliency maps. In most cases, it em-
phasizes edges and might be susceptible to background texture,
such as in the saliency maps in the 5th, 7th and 9th rows of Fig-
ure 7. Despite being too inaccurate for salient region detection,
the elegant formulation and short execution time of this method
make it attractive to applications that do not require accurate
regions, such as fixation prediction (Borji et al., 2015), or as a
building block for more elaborate methods (Silva et al., 2014).

5.6. Limitations

The proposed method is based on the premise that salient
regions distinguish themselves from the background in terms of
color – also known as the color uniqueness hypothesis. While,
in practice, this is mostly true for natural images, there are cases
in which this does not happen. The Figure 7 (tenth row) shows
one such case, in which it is possible to notice that the nose of
the doll is detected as salient due to its distinctive color, while
the rest of the doll, which was expected to be the salient region,
is not. Except for SR, all other methods also assume that the
salient regions have distinctive color, consequently they share
this limitation and also output incorrect saliency maps, some
very similar to that of the proposed method.

Unlike approaches which explicitly model image boundaries
as background (e.g. AMC) or which performance relies heav-
ily on center-bias (e.g. RCS), the proposed method employs
a “soft” boundary prior. This is accomplished by concentrat-
ing the random sampling for color distance computation on the
image boundaries. This does not explicitly set the boundaries
as background, which makes the method robust since it still
allows salient regions inside them. However, this also makes
the method susceptible to high-contrast boundary distractors,
as shown in Figure 7 (last row). Notice that the same boundary
distractor is detected as salient by FT, since its model relies on
color contrast without distinguishing boundary regions.

6. Conclusions

This paper presented a bottom-up, unsupervised, compu-
tationally efficient method for salient region detection. It is
based on a random color distance map, which estimates vi-
sual saliency as accumulated color distances to a color sum-
mary of the image, computed from a set of pixels randomly
sampled from the scene. This map can be computed very ef-
ficiently if the set of random pixels is kept small, resulting
in a highly descriptive, albeit noisy, saliency representation.

By joint upsampling this noisy representation with the origi-
nal input image, the proposed method computes an accurate,
full-resolution, saliency map. The experimental results indi-
cate that the method is highly competitive with the state-of-the-
art in terms of accuracy and execution time on the MSRA1K,
MSRA10K and SED2 datasets, achieving remarkable trade-off.
In particular, using the adaptive threshold by Achanta et al.
(2009), it achieves an F-measure of 0.7933, 0.6956 and 0.7235
on the MSRA1K, MSRA10K and SED2 datasets, respectively,
with an average execution time of 0.0638 seconds per 400 × 300
image.

The parameter assessment showed that it is possible to com-
pute accurate saliency maps with very few distance computa-
tions per pixel, and that this can be made in a heavily down-
sampled input image. It was shown that computing the saliency
of each pixel as its color distance to 10 randomly sampled pix-
els, with the input image downsized to 20% of its original size,
resulted in the best trade-off between accuracy and execution
time. Computation with less downsampling did not signifi-
cantly improve accuracy – in some cases it even decreased it.
Moreover, an assessment of different boundary ratios indicated
that boundary prior always improves accuracy. In the experi-
ments, a boundary ratio of 20% resulted in an accuracy increase
of approximately 10%.

Future work includes further investigation of extensions to
the random color distance map. Boundary prior was trivially
incorporated into the proposed method, significantly improving
accuracy at practically no additional computational cost. Addi-
tional priors, such as spatial distribution (Liu et al., 2007) and
objectness (Alexe et al., 2010), might be incorporated to fur-
ther improve accuracy. The model might also be adapted for
additional features besides color, providing a compact and effi-
cient representation for applications requiring fast computation,
which might be joint upsampled if high accuracy is required.
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