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Abstract—The human visual system employs an information se-
lection mechanism, visual attention, so that higher-level cognitive
processes can be restricted to a potentially important subset of the
incoming information. This mechanism is amenable to efficient
computational implementation and, consequently, it has been
incorporated into many technological applications. Among these
applications is autonomous mobile robotics, in which efficient
vision systems are paramount given their limited computational
resources and energy autonomy requirements. Robots have
employed visual attention for directing gaze and accelerating
object detection, among other tasks. However, it has always
been approached as a single rigid input-output stage. In this
work, a bottom-up, unsupervised visual attention model based
on progressive processing is presented. It adopts an incremental
approach, in which a rough output is rapidly computed, and
then successively refined, providing graceful-degradation, which
might be particularly useful by robots based on the subsump-
tion architecture. Progressive processing is achieved at a pixel
saliency estimation level by adopting a method based on color
distance to random pixel samples, and at a scale level through
bidimensional interlacing. The proposed approach is assessed in
the SIVAL dataset, and compared to other two visual attention
models commonly employed in robot vision, presenting highly
competitive performance.

Index Terms—Visual attention, Saliency detection, Robot vision

I. INTRODUCTION

Robot vision shares many of the issues that limit the human

visual system. Among them is the inability to entirely process

the incoming visual information in detail, due to limited

processing capacity. From psychological experiments [1], [2],

it is known that the human visual system copes with this

limitation by employing a selective mechanism called visual

attention that reduces the operation of posterior processing

stages to a significantly smaller, potentially important, subset

of the information. This allows rapid response to visual stimuli,

despite the immense amount of information that is constantly

presented to the visual system. Computational reproductions of

this mechanism have been successfully applied in several vision-

based technological applications such as image compression

[3], and image retargeting [4]. The selective capabilities of

visual attention are also applicable and especially important

in robot vision, where rapid response is required, while delay

associated with complex control systems and actuators might
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Fig. 1. Progressive object localization based on visual saliency. A rough
saliency map is computed rapidly and then successively refined in a coarse-to-
fine manner (bottom rows). Object localization using saliency maps computed
from the proposed approach is indicated over the input image in red (top left).
More refined passes are indicated by darker red. Each rectangle indicates the
largest connected component of the thresholded saliency map.

be involved. This is particularly true for autonomous mobile

robots, where not only hardware capability is more limited, but

parsimonious use of processing power is of vital importance

for increased energy autonomy.

Since information selection based on high-level, semantic,

information is subjective and task-dependent, most research

on computational visual attention has focused on its low-level

aspects, namely saliency detection, which is the estimation

of the distinctiveness of each location in the scene based on

low-level image features (i.e. color, orientation, depth). Such

a general, stimulus-based, approach is amenable to efficient

computational implementation, an advantage that has made

it widely employed for visual search space reduction prior

to more time consuming tasks, such as object detection and

recognition. Several computational methods have been proposed

to estimate visual saliency, based on approaches such as graph-

theory [5], Bayesian learning [6] and frequency-domain analysis

[7]. From an input image, these methods compute a single

saliency map, which is an image that indicates the degree

of saliency in each scene location. The problem with most

of these methods is usually twofold: (i) long execution time,978-1-5386-0956-9/17/$31.00 © 2017 IEEE



limiting their application as pre-processing filters, and (ii)

rigid processing scheme, limiting their robustness in dynamic

applications. While the former can be partially addressed

by downsizing the input image, the latter has been mostly

neglected, since most authors treat saliency detection as a single

input-output stage, even if in practice they are comprised of

several processing stages.

Psychological evidence suggests that visual attention effi-

ciency is not constant, and might be significantly affected by

processing capacity availability [8]. The consideration of this

additional aspect – that the process of visual attention itself

might be “truncated” due to limited time available for compu-

tation in a given circumstance – can lead to significant increase

in the robustness of computational visual attention models. This

suggests that it might be useful to model visual attention as

a progressive process, capable of providing increasingly better

results according to available time. While the usefulness of this

aspect might vary for different applications, it is clearly advan-

tageous for autonomous mobile robots, since they commonly

operate on dynamic environments and require adaptive behavior

to respond adequately in such conditions. More specifically,

operating circumstances (e.g. higher priority behavior) might

require subsumption (i.e. suppression, inhibition) [9] of vision-

related behavior, making it highly desirable to have a visual

attention system designed to provide useful output even if

interrupted, since it might happen at any moment. Considering

this, we propose a progressive visual attention model capable

of fast output and successive refinement (Figure 1), and assess

its performance for the task of object localization.

The proposed model computes a rough saliency map as

soon as possible and successively improves it, in order to

provide the most accurate output until a possible interruption.

Unlike top-down, reinforcement learning methods [10], the

proposed method provides progressive processing of bottom-

up saliency estimation. It is based on a combination of saliency

detection using random color distance maps [11] and interlacing

based on the approach adopted for progressive display by the

PNG (Portable Network Graphics) standard [12]. Results of

object localization experiments on the SIVAL dataset show

that the model compares favorably to other two widely used

approaches that are commonly employed in robot vision.

Through assessment in terms of precision, recall, F-measure and

execution time, we show that the proposed approach is effective

and can be significantly advantageous in resource-constrained

systems, providing an additional level of robustness largely

unexplored by previous computational visual attention methods.

II. RELATED WORK

A. Visual Attention in Robot Vision

An early application of visual attention in robot vision

was presented by Scheier and Egner [13], in which a con-

nectionist, intensity-based, bottom-up visual attention system

was embedded in a mobile robot for object localization. In

their experiments, large objects were detected and used as

landmarks for navigation, which was successful on their simple

experimental environment. This system was based on the

computational visual attention model proposed by Goebel [14],

which is an oscillatory neural model, that distinguishes different

objects by means of their phase relation, i.e. an uncorrelated

phase relation implied different objects.

Later applications on robot vision were mostly based on the

highly successful model proposed by Itti, Koch and Niebur [15]

– henceforth called IKN. This model was formulated around

the Feature Integration Theory by Treisman and Gelade [1],

in which visual attention is attracted to scene locations that

are distinctive with respect to their surroundings in terms of

low-level features, such as color, intensity and orientation.

Kismet, a robotic head designed for social human interaction

[16], adopted a visual attention system based on the IKN model,

extending it with motion saliency and face detection. Combined

with the robot’s motivational state, candidate locations indicated

by the visual attention system were employed to guide its eye

gaze. Vieira Neto and Nehmzow [17] employed IKN as an

interest point detector in a novelty detection framework for an

autonomous mobile robot, showing that this approach presents

more consistent results than the multi-scale Harris corner detec-

tor [18]. Frintrop, Jensfelt and Christensen [19] employed an

IKN-based visual attention model to detect and track scene loca-

tions in order to build landmarks in a visual SLAM application.

A more recent and very elegant visual saliency model was

presented by Hou and Zhang [7], in which salient regions

of the scene are computed as a difference in the frequency-

domain. Based on natural image statistics literature, the authors

found that a general image model might be estimated from

a single image, more precisely, that the average-filtered log

spectrum of an image is a reasonable approximation for the

mean log spectra of several natural images. Thus, subtracting

the log spectrum of the image from its average-filtered log

spectrum results in the “innovative” content in the image, that

is, information that is not common to natural images in general.

This difference is called the spectral residual, and was shown

to perform as an effective saliency map when transformed

to the spatial domain, outperforming IKN in both accuracy

and execution time [7]. Motivated by its short execution time,

Rudinac and Jonker [20] employed the spectral residual in

robot vision for the task of object localization. Besides the

spectral residual of the intensity channel, as in its original

formulation [7], the authors considered two additional color-

opponent channels: red−green and blue−yellow, following

the approach of Walther and Koch [21]. Maximally Stable

Extremal Regions [22] were detected and clustered over the

saliency map, indicating salient object locations.

B. The Psychological Plausibility of Varying Efficiency in

Visual Attention

The ability of visual attention to ignore distractors have

been associated to perceptual load by Lavie’s Load Theory

of Attention [8], which claims that the visual system exhausts

its processing capacity on relevant information when it is

overloaded, while processing capacity “spills over” distractors

when it is underloaded. The original formulation of this theory

proposed it as a resolution to the early vs. late selection debate,
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Fig. 2. The input image is uniformly downsized to a scale commonly assumed as appropriate for pre-attentive vision (64 pixels in width) [7]. From its
RGB channels, an intensity and two color-opponent channels are computed. This representation is then progressively sampled through 7-pass bidimensional
interlacing, which provides coarse-to-fine versions of the image. For a given interlacing pass, an intermediate saliency map estimated from color distances to
random samples of the image is computed before sampling the next pass. Sampling from both interlacing and color distance computation can be interrupted, in
which case the data processed until then is combined into a saliency map.

which questioned whether distractors were filtered based on

semantic information or prior to any semantic interpretation.

Considering that both of these seemingly opposing views

are supported by experimental evidence, the Load Theory of

Attention proposed a hybrid framework based on processing

capacity: selection is early or late according to how much

perceptual processing capacity is available – early if overloaded,

late otherwise. More recent work has argued that this theory

does not address late selection conditions at all, as Benoni and

Tsal [23] argued that what it does is to provide evidence for

the varying efficiency of early attention. In this work, we are

not concerned about the precise interpretation of the varying

efficiency of visual attention – only that it is very akin to what

happens on the human visual system and that this principle

might be leveraged to design more robust computational visual

attention systems. For a detailed discussion of the current

research regarding Lavie’s Load Theory of Attention and its

competing interpretations, the reader is referred to [23]–[26].

III. PROPOSED METHOD

The proposed method (Figure 2) adopts a progressive

processing approach with two main components: (i) saliency

estimation using random color distance maps and (ii) coarse-to-

fine decomposition using bidimensional interlacing. The former

provides control of processing at pixel saliency-estimation,

while the latter provides control at a scale level.

A. Saliency Estimation

The random color distance map approach is a fast method

based on color distances to random samples [11]. This method

allows progressive processing at a saliency estimation level.

More precisely, given an input image I , the saliency S(x, y)
of each pixel I(x, y) is estimated as:

S (x, y) =
∑

∀ (xr, yr)∈ IR

|| I(x, y) − I(xr, yr) ||, (1)

where IR is a set of pixel locations randomly sampled from

I . The random set IR is resampled for each S(x, y) – it is

through this sample that progressive processing is achieved. All

pixels I(x, y) have their color distance computed to a single

pixel of their instance of IR, then to the next pixel, and so on
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Fig. 3. Sampling pattern for 7-pass (Adam7) interlacing. The numbers indicate
in which pass the pixel each position will be sampled. If interlacing is
interrupted, missing values are obtained by nearest neighbor interpolation.

until the set size NR. In this manner, accuracy is improved

more homogeneously throughout the image and all pixels have

a saliency estimate as soon as possible.

For salient object detection, which attempts to obtain

segmentation-level accuracy, the random color distance map

was originally joint upsampled [11]. This was done to address

the noisy output resulting from the adoption of small values

of NR, which in turn was done to speed up execution. Since

we are concerned with object localization, which does not

require segmentation-level accuracy, a Gaussian low-pass filter

(5×5 support) is adopted instead, further improving execution

time. Additionally, unlike the original formulation by Lie and

colleagues [11] that operated in the CIELAB color space, com-

putation is done in an intensity channel and two color-opponent

channels (i.e. red−green and blue−yellow) following the more

computationally efficient approach by Rudinac and Jonker [20].

B. Bidimensional Interlacing

Progressive processing at scale level is provided by bidimen-

sional interlacing, for which the 7-pass (Adam7) interlacing

pattern [12] was chosen. Adam7 is the approach adopted for

progressive display in the PNG (Portable Network Graphics)

format. This interlacing scheme is defined by a 8×8 sampling

pattern (Figure 3), which is repeated through the entire image

and performed in seven passes.
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Fig. 4. Effect of the size NR of the random sample in saliency estimation. Despite larger values marginally increasing accuracy in later passes, there is little
improvement for NR ≥ 8. This is a convenient characteristic, since the execution time of saliency estimation increases linearly with respect to NR.

The result of bidimensional interlacing using the 7-pass

approach is roughly equivalent to a multi-scale decomposition.

However, unlike other multi-scale decompositions such as the

popular Gaussian pyramid [27], Adam7 interlacing proceeds

directly in a coarse-to-fine manner, whereas a Gaussian pyramid

must be entirely built in a fine-to-coarse manner before coarse

scales can be used. For progressive processing, coarse-to-fine

is preferred since its purpose is to compute a rough output

as soon as possible, so that a useful output is available even

if posterior refinement steps must be interrupted. Moreover,

a Gaussian pyramid is built from successive filtering, while

interlacing is computed simply as a sampling pattern, being

more computationally efficient since it does not require any

filtering at all. As a downside, unlike a Gaussian-scale space,

interlacing does not follow the scale-space axioms nor is

optimal in any mathematical sense. Since this limitation does

not compromise the output, the proposed method adopts the

interlacing approach for its implementation simplicity and

computational efficiency.

C. Combination

The saliency map at a given instant is computed as the

weighted combination of the saliency maps for all passes

computed until then. The weights are defined so that earlier

passes contribute less to the final result, since they were

computed from significantly less data than later passes and

consequently present more uncertainty. The combined saliency

Sc (x, y) of each pixel I(x, y) is defined by Equation 2:

Sc (x, y) =
1

N

N∑

n=1

n · Sn (x, y), (2)

where Sn is the saliency map for the nth pass of the interlacing,

and N indicates the last pass computed at the moment of

combination. While more elaborate approaches are possible,

a simple approach is desirable, since the proposed method is

meant for dynamic applications which require fast output.

IV. EXPERIMENTS

The proposed method was assessed in terms of precision,

recall, F-measure (β2 = 0.3) [28] and execution time, for the

task of object localization. The experiments were executed in

an Intel Core i7-860 2.80 GHz CPU with 4 GB RAM, using the

publicly available SIVAL (Spatially Independent, Variable Area

and Lightning) dataset [29]. It contains 24 object categories

with 60 images each, totaling 1500 images with 1024×768

TABLE I
DATA SAMPLED (%), ACCURACY AND EXECUTION TIME FOR EACH PASS.

Pass 1 2 3 4 5 6 7

Data sampled 2% 4% 7% 13% 25% 50% 100%

F-measure 0.38 0.41 0.44 0.45 0.47 0.48 0.49

Exec. time (s) 0.02 0.03 0.04 0.06 0.09 0.11 0.14

pixels in size, presenting changes in background, perspective,

scale, and lightning conditions. Because this dataset does not

originally provide ground-truth images, the manually extracted

object binary masks used in the work of Borba and colleagues

[30] were adopted as ground-truth.

Unlike some popular datasets used in visual attention

assessment [28], [31], the SIVAL dataset is more suitable

for the context of robot vision since it does not present center-

bias (i.e. tendency for the objects to be in the center of the

image). In images such as photographs, it is reasonable to

assume that the object of interest is roughly centered due to

photography composition principles such as the rule-of-thirds

[32]. In robot vision this is not the case, since objects might

be in the boundaries of the image due to robot movement.

A. Size of the Random Sample

Saliency estimation using random color distance maps is

advantageous due to its computational complexity. It has linear

complexity, with a constant factor proportional to the size NR

of the random samples used for distance computation [11].

To determine an adequate value for NR, its F-measure was

computed for several values for each pass, as shown in Figure 4.

The results show that most of the accuracy is achieved for a

small sample size, with little improvement after approximately

NR = 8. Later passes benefit more from a larger set size, but

only marginally. Considering this, NR = 8 was adopted for all

passes.

B. Efficacy of Progressive Processing

One of the main advantages of the proposed method is that

it is capable of computing a rough saliency map as soon as

possible. In this manner, it has a guaranteed useful output even

if it is truncated prior to significant refinement. However, this

assumes that the initial saliency map is accurate enough to

be useful. To verify whether this is the case, the accuracy of

the output at the end of each pass was assessed, as shown

in Table I. Considering the best accuracy possible with the



IKN

Spectral Residual (color)

Spectral Residual

Proposed (7th pass, NR = 8)

Proposed (1st pass, NR = 1)

P
re

ci
si

o
n

Recall

0.1

1.0

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Fig. 5. Precision vs. Recall curves for the compared methods. The proposed
method presents competitive accuracy even in the first pass, significantly
surpassing all compared methods by its last pass. The shaded region indicates
the accuracy range of the intermediate passes of the proposed method.

proposed method (i.e. NR distances per pixel on all passes), it

seems that the assumption is reasonable, since a very significant

amount of the final accuracy of the method (i.e. F-measure

0.38 of 0.49) is achieved during the first pass. Moreover, the

first pass achieves this while sampling only 2% of the image.

These results show that the accuracy of the initial pass

is substantial compared to that of all passes. However, this

does not guarantee that the method is advantageous for object

localization. What remains is to show that the range of accuracy

achievable by the method is competitive other state-of-the-

art methods employed for this task. This is shown in the

comparative analysis that follows.

C. Comparative Analysis

The proposed method is assessed and compared to other

two approaches, IKN [15] and spectral residual (SR) [7]. This

comparison is not meant to be exhaustive – the choice of

algorithms was motivated by their prevalence as basis for visual

attention systems on robot vision applications [16]– [20]. In

the case of the spectral residual, it was considered both in its

original intensity-based formulation and in the color derivation

proposed by Rudinac and Jonker [20]. A qualitative comparison

is presented in Figure 6.

The precision vs. recall curves for quantitative comparison

are presented in Figure 5. The shaded region indicates the

range of curves where the intermediate saliency maps of the

progressive approach occur. As can be seen, during the first pass

the proposed method is already competitive with the compared

methods, while in its last pass it significantly surpasses all

of them. In terms of execution time (Table II), the first pass

of the proposed method has a performance equivalent to the

intensity-based spectral residual, despite being less accurate.

The color-based spectral residual is slightly slower, since it

computes two additional color-opponent channels with respect

to its intensity-based counterpart. Since it provides a subtle

TABLE II
ACCURACY AND EXECUTION TIME OF THE COMPARED METHODS.

Proposed
SR SR (color) IKN

1st pass 7th pass

F-measure 0.38 0.49 0.45 0.46 0.33

Exec. time (s) 0.02 0.14 0.02 0.03 0.42

increase in accuracy, the additional execution time might be

small enough so that it is still advantageous. The last pass of

the proposed method, corresponding to the most accurate of

the compared methods, has an average execution time of 0.14

seconds, which is significantly slower than the spectral residual

approach. However, this is still within the time frame expected

of bottom-up visual attention, which has been reported to take

approximately 0.15 seconds in the human visual system [2].

IKN is the least accurate and also the most time-consuming of

the compared methods. This does not mean that it is generally

inefficient, but suggests that it might be more adequate for

tasks such as gaze prediction than object localization.

V. CONCLUSIONS

While progressive processing has been largely unexplored in

visual attention research, it provides very significant advantages

for autonomous mobile robots. This is more explicit in

systems that employ a subsumption architecture [9], where

complex behavior occurs as consequence of the interaction of

simpler ones that occur in parallel. In such an architecture,

behaviors must be designed under the premise that they may

be subsumed by higher priority behavior. In this case, the

capability of providing a useful output as soon as possible

through progressive processing, so that any interruptions only

affect its refinement, is highly desirable. Thus, this paper

presented such an approach for bottom-up visual attention

and assessed it for the task of object localization.

The proposed approach has shown to be effective in terms of

precision, recall, F-measure and execution time in the SIVAL

dataset. Moreover, it demonstrated competitive accuracy and

computational performance with respect to models commonly

employed in robot vision, providing an output as soon as the

fastest method and being capable of refinement until it is more

accurate than all of them – within the time reported to be taken

by the human visual system [2].

The method presented is a proof-of-concept that, despite

being successful, can be significantly improved. In future work,

we intend to generalize the interlacing approach and assess

the method for any number of passes. For a proof-of-concept,

the seven passes adopted by the PNG standard was reasonable,

but it does not provide the granularity necessary for a more

detailed analysis of the effect of different scales and amount of

sampled data. We also intend to employ the proposed approach

in an object detection and recognition framework to assess

the effectiveness of its visual search space reduction. Some

authors have achieved very promising results using the spectral

residual recently [33], encouraging further investigation of the

capabilities of our approach.
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