
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2019 1

Discriminative Layer Pruning for
Convolutional Neural Networks

Artur Jordao, Maiko Lie, William Robson Schwartz

Abstract—The predictive ability of convolutional neural net-
works (CNNs) can be improved by increasing their depth.
However, increasing depth also increases computational cost
significantly, in terms of both floating point operations and mem-
ory consumption, hindering applicability on resource-constrained
systems such as mobile and internet of things (IoT) devices.
Fortunately, most networks have spare capacity, that is, they
require fewer parameters than they actually have to perform
accurately. This motivates network compression methods, which
remove or quantize parameters to improve resource-efficiency. In
this work, we consider a straightforward strategy for removing
entire convolutional layers to reduce network depth. Since it
focuses on depth, this approach not only reduces memory usage,
but also reduces prediction time significantly by mitigating the
serialization overhead incurred by forwarding through consecu-
tive layers. We show that a simple subspace projection approach
can be employed to estimate the importance of network layers,
enabling the pruning of CNNs to a resource-efficient depth
within a given network size constraint. We estimate importance
on a subspace computed using Partial Least Squares, a feature
projection approach that preserves discriminative information.
Consequently, this importance estimation is correlated to the
contribution of the layer to the classification ability of the model.
We show that cascading discriminative layer pruning with filter-
oriented pruning improves the resource-efficiency of the resulting
network compared to using any of them alone, and that it
outperforms state-of-the-art methods. Moreover, we show that
discriminative layer pruning alone, without cascading, achieves
competitive resource-efficiency compared to methods that prune
filters from all layers.

Index Terms—Network compression, network pruning, convo-
lutional neural networks.

I. INTRODUCTION

CURRENT visual pattern recognition models are pre-
dominantly based on convolutional neural networks.

This approach was proposed in the nineties by LeCun et
al. [1], and entered the computer vision mainstream with
the work by Krizhevsky et al. [2], which surpassed the
accuracy of previous approaches by a large margin on the
ILSVRC 2012 challenge [3] using a deep convolutional neural
network (CNN). The typical structure of early CNNs was
straightforward — stacks of convolutional layers (some of
them normalized and spatially pooled), followed by fully-
connected layers. Since then, many works have suggested
improvements such as normalization approaches [4] and more
sophisticated convolutional blocks [5]. However, the most
influential principle resulting from such improvements might
be that increasing network depth is an effective approach to
improve prediction ability [6][7][5], a strategy that is adopted

The authors are with the Smart Sense Laboratory, Department of Computer
Science, Federal University of Minas Gerais, Belo Horizonte MG 31270-901,
Brazil. (A. Jordao and M. Lie contributed equally to this work.)

FLOPs

0.5 0.6 0.7 0.8 0.9 1.0
0.5

0.6

0.7

0.8

0.9

1.0

M
em

o
ry

 u
sa

ge

PLS/VIP Ours + PLS/VIP

Ours + ℓ1-norm (25%)ℓ1-norm (25%)
Ours + ℓ1-norm (15%)ℓ1-norm (15%)

Ours

Individual methods: Cascaded:

Fig. 1. Resource-efficiency of a ResNet110 model compressed by different
pruning methods – the closer to the bottom left, the better. The accuracy of
all models shown are within one percent of the original, unpruned, network.
Discriminative layer pruning (labeled as “Ours”), can be cascaded with filter-
oriented pruning methods to substantially improve their resource-efficiency.
In fact, it is capable of achieving competitive performance even by itself,
without cascading. The original network was pre-trained on the CIFAR-10
dataset. The axes indicate the memory and floating point operations (FLOPs)
used during inference as fractions of the usage by the original network.

by most modern CNN architectures. In fact, several of the
most notable contributions in deep learning for visual tasks
in recent years have involved strategies for training deeper
convolutional neural networks [8][9][10].

While deeper networks are capable of learning to recognize
more complex patterns, the resulting number of parameters
incurs large computational cost in terms of both floating
point operations (FLOPs) and memory consumption. The
latter is a problem not only due to static storage size but,
more importantly, due to run-time memory access, which can
be a bottleneck due to the large number of feature maps
computed during inference and accounts for most of the energy
consumption by the network [11]. These issues lead to slow
inference and can hinder, or even prevent, its deployment on
resource-constrained systems such as mobile and internet of
things (IoT) devices. This work addresses these issues by
exploring network redundancy in depth (i.e., layer removal),
which can improve memory usage by reducing the amount of
feature maps computed (Fig. 1), as well as prediction time
by reducing the amount of serialization overhead incurred by
forwarding through consecutive layers.

There are two main strategies to leverage the large gen-
eralization ability of deep neural networks while mitigating

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2019 2

their high computational cost — neural architecture search
and network compression. The former is a synthesis approach
and can be seen as a search for high-performance sub-graphs in
a larger graph [12], typically with genetic algorithms [13][14]
or more sophisticated controller mechanisms [15]. Since each
candidate architecture in this search incurs an additional train-
ing cycle, this process is computationally intensive — some
of them take several days to process even with hundreds of
GPUs [12]. The latter, on the other hand, is a transformation
approach, which starts from an existing network and leverages
the redundancy in its parameters to achieve better resource-
efficiency. The most popular approaches for compressing
neural networks are parameter quantization [11][16], encoding
[11][17] and pruning [18][19].

In this work, we focus on network compression by pruning,
which consists in removing unimportant parameters from the
network to reduce resource usage while preserving as much
accuracy as possible. Pruning is an attractive approach because
it can be applied to off-the-shelf networks to fit a given
set of resource constraints and it has achieved impressive
trade-offs between resource usage and accuracy. In some
cases, pruning is capable of compressing network size while
also improving accuracy, demonstrating its ability to reduce
overfitting [20][21].

We introduce layer pruning using a discriminative impor-
tance estimation criterion based on Partial Least Squares
(PLS) projection [22]. Since PLS projection preserves discrim-
inative information, this criterion is correlated to the contri-
bution of the parameters to the classification ability of the
network. Differently from most previous approaches, instead
of removing parameters from all layers, or even on a layer-
by-layer basis, we remove entire layers (or blocks, depending
on the architecture), starting from the end of the network
and stopping according to an importance criterion, therefore
decreasing depth. The remaining layers can then be pruned
using other approaches, such as filter-oriented methods [18].

The main contributions of this work are: (i) the introduction
of a discriminative layer ranking criterion and experiments
showing its efficacy for layer pruning in CNNs, (ii) the
demonstration that cascading layer pruning with filter pruning
not only improves memory usage and FLOP count compared
to using any of them alone, but also improves prediction
time even at similar FLOP count due to the reduction of
serialization in the network, which is proportional to depth.

We show that cascading layer pruning with other pruning
methods improves the resource-efficiency of the resulting
network compared to using any of them alone (Fig. 1). Since
the computational cost of several pruning methods is domi-
nated by fine-tuning cycles for each layer [19][23][24][25],
pruning efficiency can also be improved by this cascaded
approach. Another interesting result is that layer pruning
alone, without cascading, while seemingly simplistic, still
achieves competitive resource-efficiency compared to filter-
oriented methods. To demonstrate the effectiveness of discrim-
inative layer pruning, we conduct experiments with residual
networks [9] on the CIFAR-10 and ImageNet datasets. We
focus on residual networks since they are not only the state-
of-the-art in computer vision, but are also deeper than other

models often used in pruning experiments (e.g., AlexNet and
VGG) and have fewer parameters in their fully-connected
layers, thus allowing a more challenging assessment [18].

II. RELATED WORK

Since deep neural networks are typically over-paramete-
rized, removing unimportant parameters — pruning, is a
reasonable strategy to improve their resource-efficiency and
is often the first choice for network compression. There
are technical and theoretical motivations for compression by
pruning. Technically, pruning is attractive because it can be
applied to off-the-shelf networks and often leads to higher
compression rates than quantization [11]. Moreover, it is
more efficient than neural architecture search, since starting
from a pre-trained network entails search on a much smaller
parameter space. Theoretically, it has been argued that pruning
over-parameterized networks leads to higher accuracy than
training small networks from scratch because the combination
of weights and connections from a pre-trained network leads to
a more effective region of the parameter space, which would
be harder to reach otherwise [26]. This fact has also been
suggested by several experimental works [18][23].

Pruning consists in parameter removal and re-training (i.e.,
fine-tuning), possibly over several iterations, to readjust the
network to the architecture change. Thus, the central problem
in pruning is to choose which parameters should be removed
from the network. Since re-training the network to evaluate
all possible cases is intractable, efforts have been devoted in
the design of importance estimation functions that perform
parameter ranking, that is, assignment of scores used to
estimate the relative importance of different sets of parameters.
While these sets can be selected from arbitrary locations in
the network, a structured approach is often preferred. In other
words, instead of individual parameters, coarser elements of
the network (e.g., filters, layers) are removed. This is motivated
mainly by computational efficiency since removing individual
parameters leads to fine-grained sparsity, which can result
in poor locality of reference and is detrimental to hardware
optimization [27]. It can also be argued that coarser elements
are more interpretable than individual parameters since, for
instance, filters often describe meaningful visual patterns and
the position of layers suggest their relative abstraction level.
Moreover, there is evidence suggesting that coarse-grained
(i.e., structured) sparsity acts as regularization once it con-
strains the position of the parameters [28].

A reasonable heuristic to follow when designing pruning
criteria is evaluating the effect of parameters on activations.
For instance, among the simplest criteria, the `1-norm is
arguably the most popular. Pruning based on this criterion
consists basically in removing filters that have small `1-norm
(i.e., average magnitude) and it is motivated by the fact that
filters with small weights tend to output weak activations [18].
A more data-driven strategy is to apply the network to a
dataset and measure the average number of zero activations
associated with each parameter during prediction [23] — since
zero activations are assumed to have little, if any, impact on the
output of subsequent layers, the parameters that originate them

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2019 3

can be good candidates for pruning. An alternative is to avoid
assuming the impact of parameters on activations altogether
and simply minimize the reconstruction error associated with
them [19][24], possibly considering consecutive layers [29].

The aforementioned approaches operate locally, that is,
the information they consider for importance estimation is
constrained to the neighborhood of the parameter (e.g. its
surrounding filter or layer). A recent work [30] has argued
that parameters assumed to be unimportant in an early layer
can actually contribute significantly to the response of impor-
tant parameters in later layers and that, consequently, global
importance estimation might be more adequate. To address
this, Yu et al. [30] proposed a strategy that performs feature
ranking on the final response layer of the network (i.e.,
the one immediately before the classifier) and propagates
it backwards through the network as a neuron importance
measure. Considering that the response of that layer is what
is effectively input to the classifier, they argue that minimiz-
ing its reconstruction error is an effective goal for pruning.
While feature ranking on the final response layer can provide
useful information regarding the effect of parameters on the
classification ability, it is still restricted to what is input to
the classifier. Zhuang et al. [31] argued that a more direct
approach is to simply assess the output of the classifier, for
instance, by optimizing a discrimination-aware loss during
fine-tuning. They proposed and demonstrated the effectiveness
of computing several discrimination-aware losses distributed
across the network. In our experiments, we assess discrim-
ination using a different strategy — we project the output
of different layers of the network on subspaces using Partial
Least Squares (PLS) [22], a feature projection approach that
maximizes the covariance between the transformed features
and the class labels. PLS has shown remarkable effectiveness
for dimensionality reduction of visual features [32] and has
recently been employed for filter-oriented pruning by Jordao
et al. [33]. In contrast to the latter, instead of projecting a single
subspace for all filters, we project one subspace for each layer,
therefore significantly reducing memory requirements during
pruning. Moreover, we focus on reducing depth instead of
removing filters across the entire network.

Depth reduction has been mostly neglected in network
compression, which is reasonable since the trend in neural
network architecture design has been the exact opposite —
increasing depth to improve prediction ability [7][8][9][10].
However, in resource-constrained systems, it is disadvanta-
geous to employ very deep networks in a one-size-fits-all
manner. While, to our knowledge, this has not been explored
in pruning, recent work on adaptive neural networks [34][35]
have emphasized the possibility of truncating prediction when
early layers are sufficient to classify with high confidence
[36][37][38]. The motivation is that only hard samples need
to reach very deep layers for accurate prediction, while the
majority of samples are actually easy to predict and can stop
early [39]. This suggests a trade-off that can be leveraged to
increase efficiency while preserving accuracy. Depth reduction
by pruning relies on similar assumptions, but it does not
insert additional parameters or decision logic to the network.
A significant advantage is that, by not making any drastic

modification to the architecture, other pruning methods can be
cascaded to increase resource-efficiency without any additional
implementation effort.

III. DISCRIMINATIVE LAYER PRUNING

A. Problem Definition

Let the input model M be a residual network composed by
a set of residual blocks Bi. The pruning method must assign
an importance score Si to each block and employ a policy to
remove those with low scores. After fine-tuning, the pruned
model Mp can then be employed for prediction as-is or pruned
further using, for instance, filter-oriented methods.

Note that we adopt notation and definitions in terms of
residual blocks only for convenience, since our experiments
are based on residual networks. The approach is identically
applicable to the output of ordinary convolutional layers or
more elaborate blocks (e.g., inception blocks [7]).

B. Importance Estimation

The criterion we use for importance estimation is based on
Partial Least Squares (PLS), which is a discriminative feature
projection method that maximizes the covariance between
the transformed features and the class labels [22]. PLS is
often used for dimensionality reduction and can be employed
as an alternative to Linear Discriminant Analysis (LDA),
since it does not have some limitations of the latter, namely
having issues when the number of features is larger than
the number of samples and being capable of providing only
as many meaningful features as there are classes. PLS can
be computed using nonlinear iterative partial least squares
(NIPALS), described in Alg. 1, where c is the dimensionality
of the output features.

There are several approaches to perform feature selection
based on a subspace projected via PLS. We employ the
Variable Importance in Projection (VIP) score [40], which is

Algorithm 1: NIPALS
Input : Data matrix X ∈ Rm×n

Label vector y ∈ Rn

Number of components c

Output: Weight matrix W

for i← 1 to c do
Repeat until wi converges:

Let u ∈ Rm×1 be a randomly initialized vector
wi ← X>u/||X>u||
ti ← Xwi

qi ← y>ti/||y>ti||
u ← yqi

pi ← X>ti

X ← X − tip
>
i

y ← y − tiq
>
i

end

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2019 4

3x
3

co
nv

, 1
6

3x
3

co
nv

, 1
6

3x
3

co
nv

, 1
6

3x
3

co
nv

, 1
6

3x
3

co
nv

, 1
6

3x
3

co
nv

, 1
6

3x
3

co
nv

, 3
2

3x
3

co
nv

, 3
2

3x
3

co
nv

, 3
2

3x
3

co
nv

, 3
2

3x
3

co
nv

, 3
2

3x
3

co
nv

, 3
2

3x
3

co
nv

, 6
4

3x
3

co
nv

, 6
4

3x
3

co
nv

, 6
4

3x
3

co
nv

, 6
4

3x
3

co
nv

, 6
4

3x
3

co
nv

, 6
4

Re
LU

Re
LU

3x
3

co
nv

, 3
2

3x
3

co
nv

, 3
2

Im
po

rta
nc

e

Layer

Layer pruning

Fig. 2. Overview of discriminative layer pruning. Left. Convolutional layers of a residual network (ResNet20). The PLS projection is computed from the
output of residual blocks (dashed lines). Rectangles in solid gray lines indicate where feature map dimensions are the same. Right. A PLS subspace is
computed from the output of each residual block. The subspaces are represented by the colored plots, where each color is a different class, indicating that the
projection is discriminative. The normalized VIP scores of each subspace are employed for importance estimation and ranking. Pruning is performed from
the end towards the beginning of the network.

perhaps the most popular approach employed with PLS. VIP
measures how much a feature contributes to the projection
and, for each jth feature, is calculated as

V IPj =

√√√√m

c∑
k=1

SSk(wkj/‖wk‖2)/
c∑

k=1

SSk, (1)

where m is the number of features, SSk is the sum of squares
explained by the kth feature, and wjk is the jth element of
the weight vector wk ∈W .

We could estimate the score of the feature output by each
residual block as the average VIP score of its subspace.
However, since the scores of different blocks are computed
from different subspaces, comparing their average values di-
rectly is not particularly meaningful. Instead, to extract more
meaningful values to ranking, we compute the reciprocal of
their coefficient of variation (CV), i.e., ratio of the mean to
the standard deviation, as importance score.

C. Layer Pruning

The policy adopted in this work is to (i) prune from the
end towards the beginning of the network and (ii) stop pruning
before the feature map dimension changes in the network (i.e.,
Fig. 2, left — connections between rectangles in gray solid
lines). The former is motivated by the fact that abstraction
level increases towards the end of the network, with its be-
ginning containing fundamental visual features (e.g., oriented
edges, corners) that are more likely to compromise prediction
ability if removed. The latter is because accuracy degrades
significantly from that point on, so it is not computationally
advantageous to further reduce depth. This is particular to
ResNets and might be dispensable with other architectures.
In fact, such degradation is consistent with the observation
made by some authors that there are several layers in ResNets
that are best left as-is since they are more sensitive to pruning
and that some of these layers take place close to where the
dimensions of the feature map changes [18].

With our policy in place, the procedure for discriminative
layer pruning, illustrated in Fig. 2 (right) and detailed in
Alg. 2, is straightforward and proceeds as follows. Given a

Algorithm 2: Discriminative layer pruning
Input : Pre-trained model M

Training samples X

Training labels y

Output: Pruned model Mp

foreach Bi ∈M do
Li ← NIPALS(Bi, y, c)

Ii ← VIP(Bi)

Si ← 1/CV(Ii)
end
Mp ←M

for i← |M | downto 1 do
if Si < Si−1 then

Mp ←Mp \Bi

end
end
Fine-tune Mp

pre-trained model M , for the output of each residual block Bi

in this model, we compute a PLS projection and its respective
importance scores, where the X and y input to NIPALS
are the vectorized feature maps from this block and their
labels, respectively. Starting from the end of the network (i.e.,
last residual block), we follow a greedy approach and keep
removing blocks if the importance score of the next block
Bi−1 is larger than that of the current block Bi (remember
that we are going backwards through the network). After these
removals, the model is fine-tuned, resulting in the pruned
model Mp.

IV. EXPERIMENTS

A. Experimental Setup

Datasets. We evaluate the discriminative layer pruning on the
CIFAR-10 dataset [41], which is composed of 32×32 RGB
images (50K for training and 10K for testing), describing
10 classes of objects. Additionally, we perform comparative
assessment on the ImageNet large-scale image classification

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2019 5

dataset [3], which is composed of 224×224 RGB images
(1.2M for training and 50K for testing), describing 1,000
object classes. In the cascading experiments, we employ the
32×32 variant of ImageNet instead, to enable training several
network combinations since this would be unfeasible on the
original ImageNet due to the large computational cost.

Metrics. We assess resource-efficiency in terms of classifica-
tion accuracy, FLOPs and memory consumption. Additionally,
we assess the ability of different importance functions to
correctly assign relative importance to different layers (i.e.,
rank). We assume that a layer is important if the removal of
all layers after it, followed by fine-tuning, results in a network
with high accuracy (i.e., pruning stops at this layer). Thus,
we compute these classification accuracies and use them as
ground-truth for measuring the importance ranking ability of
a given importance function. This is done by computing the
pairwise ranking accuracy

R =
|P| −

∑
(p,q)∈P f(S,A, p, q)

|P|
, (2)

where S contains the scores assigned to each layer by the im-
portance function being assessed, A contains the classification
accuracies of the network when pruning stops at each layer,
P is the set of all ordered pairs of layers, and f is a binary
function describing whether the importance scores of a pair of
layers preserve the same rank as their classification accuracy

f(S,A, p, q) =


1, if Sp ≥ Sq and Ap < Aq,

1, if Sp ≤ Sq and Ap > Aq,

0, otherwise.
(3)

Implementation details. In our experiments, the training is
performed using SGD for 200 epochs, with a batch size of
128. We follow a learning rate schedule similar to He et
al. [9], starting with a learning rate of 0.01 and dividing it
by 10 once training reaches 100 epochs and again when it
reaches 150 epochs. The data augmentation procedure consists
in padding the image with four pixels in each direction and
sampling a random 32×32 crop from this padded image, or
its horizontal flip with a 50% chance. All PLS projections
are computed for two components (i.e., c = 2 in Alg. 1, see
next section). The experiments were conducted on a computer
system with an Intel Xeon Silver 4116 CPU, with an NVIDIA
GTX 1080 GPU.

B. Number of Components

The dimensionality of the PLS model is defined by the num-
ber of components onto which it projects the input features.
We assessed the ranking accuracy of the PLS/VIP criterion for
different number of components the CIFAR-10 and ImageNet
datasets. The results are presented in Figure 3.

The number of components considered in our assessment
is rather small (i.e., ≤10). This is usual for PLS models
since they often require few latent variables [42][43][44]
— for instance, features with dimensions as high as 170K
have been shown to require only 20 components for optimal

2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Number of components

R
an

ki
ng

 a
cc

ur
ac

y

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10
Number of components

R
an

ki
ng

 a
cc

ur
ac

y

Fig. 3. Ranking accuracy according to number of PLS components. Left:
ResNet20 on CIFAR-10. Right: ResNet50 on ImageNet.

TABLE I
PAIRWISE RANKING ACCURACY. RANKING WAS COMPUTED FOR

RESIDUAL BLOCKS OF A RESNET20 NETWORK ON THE CIFAR-10
DATASET. PLS WAS COMPUTED WITH c = 2 COMPONENTS.

Method Pairwise ranking accuracy
IFS [45] 0.64

ILFS [46] 0.50
PLS/VIP 0.72

representation in terms of discriminability [32]. We employed
c = 2 in our experiments considering computational efficiency,
model size, and its adequate ranking accuracy on ImageNet
and CIFAR-10.

C. Ranking Layer Importance

Since importance estimation functions that operate on filters
and channels do not translate directly to layers, we com-
pare the layer ranking ability of the PLS/VIP criterion with
other two state-of-the-art feature ranking methods employed
in vision tasks, namely infinite feature selection (IFS) [45]
and infinite latent feature selection (ILFS) [46] — both are
based on the representation of feature subsets as paths on an
affinity graph. The former was employed in the importance
propagation pruning approach by Yu et al. [30] as alternative
to a magnitude-based criterion.

The pairwise ranking accuracy of the compared methods
is presented in Table I, considering the residual blocks of a
ResNet20 model on the CIFAR-10 dataset. We limited this
assessment to this setting because of the high computational
cost required to compute the ground-truth accuracies A in
Eq. 2 (i.e., one accuracy per residual block) and because it
is unfeasible to compute IFS and ILFS on ImageNet. The
PLS/VIP criterion presented the highest ranking accuracy,
demonstrating its effectiveness for ranking layer importance
and supporting its use for discriminative layer pruning. Note
that we compute the PLS model using the entire training set,
but this does not need to be the case since NIPALS is resilient
to missing data [47]. For instance, Jordao et al. [33] have
shown that, when computing PLS for CNN filter pruning, the
difference between employing the full training set and 10% of
it was smaller than one percentage point in validation accuracy
on the CIFAR-10 dataset.

The resource-efficiency of the compared methods is pre-
sented in Table II for the CIFAR-10 dataset — since all pruned
models have accuracy within one percent of the original

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2019 6

TABLE II
RESOURCE-EFFICIENCY OF DISCRIMINATIVE LAYER PRUNING ON THE CIFAR-10 DATASET. FLOP REDUCTION AND MEMORY USAGE ARE INDICATED AS

PERCENTAGE OF THE VALUES COMPARED TO THE ORIGINAL NETWORK. ACCURACY REDUCTION IS INDICATED IN PERCENTAGE POINTS, IN WHICH
NEGATIVE VALUES DENOTE IMPROVEMENT WITH RESPECT TO THE ORIGINAL NETWORK. CASCADING DISCRIMINATIVE LAYER PRUNING IMPROVES

RESOURCE-EFFICIENCY IN ALL CASES COMPARED TO USING ANY SINGLE METHOD ALONE, WITH ACCURACY DROP WITHIN ONE PERCENT.

Method FLOPs↓ (%) Memory usage↓ (%) Accuracy↓ (top-1, p.p.)
Ours 11.56 10.95 −0.03

ResNet20

`1-norm (15%) 14.27 8.57 −0.15
Ours + `1-norm (15%) 24.02 17.58 0.00
`1-norm (25%) 24.56 14.29 0.20
Ours + `1-norm (25%) 33.23 22.51 −0.35
PLS/VIP 8.00 5.71 −0.07
Ours + PLS/VIP 16.75 14.40 0.13
Ours 30.01 30.16 0.98

ResNet56

`1-norm (15%) 14.48 8.91 −0.18
Ours + `1-norm (15%) 39.81 34.45 0.95
`1-norm (25%) 24.86 14.85 −0.31
Ours + `1-norm (25%) 47.37 38.24 0.82
PLS/VIP 7.09 4.95 −0.60
Ours + PLS/VIP 36.70 32.76 0.45
Ours 31.68 32.32 0.18

ResNet110

`1-norm (15%) 14.53 8.96 −0.39
Ours + `1-norm (15%) 41.26 36.69 0.27
`1-norm (25%) 24.93 14.93 −0.35
Ours + `1-norm (25%) 48.69 40.39 0.25
PLS/VIP 6.85 4.98 −0.59
Ours + PLS/VIP 37.73 34.77 0.06

network, we can assume that the decrease in computational
cost in this dataset comes at practically no cost in prediction
ability. The percentage accompanying the `1-norm indicates
the pruning rate employed. Results show that, when cascaded,
discriminative layer pruning improves over the result of any
filter pruning method used individually. As the network gets
deeper, cascaded layer pruning tends to account for more re-
duction in resource usage. Surprisingly, it is often competitive
even without cascading, for instance, its resource-efficiency is
superior to all individual pruning methods on ResNet56.

Considering the simplicity of the method, which simply dis-
cards entire residual blocks sequentially, the results in Table II
are interesting For instance, while He et al. [19] suggested
more aggressive pruning on early layers since deeper layers are
more challenging, we find that, not just pruning, but removing
precisely the deeper layers is surprisingly effective in terms
of resource-efficiency of the resulting network. This might be
explained by the recent hypothesis that the effectiveness of
pruning is not so much a result of the importance criteria
used for parameter selection as it is of the plasticity of neural
networks [48]. In other words, while it is known that fine-
tuning is essential to pruning [49], it has a greater importance
in its effectiveness than is often assumed.

D. Cascading Discriminative Layer Pruning

We assess the resource-efficiency of our approach both indi-
vidually and cascaded with filter pruning methods. Two filter
pruning criteria were considered, one magnitude-based and
one discriminative — the `1-norm approach by Li et al. [18]
and the PLS/VIP approach by Jordao et al. [33], respectively.

We use our own implementation of both. Note that, in their
experiments, Li et al. [18] adopt several empirically defined
pruning ratios for different parts of the network, which vary for
different ResNet sizes. Since we are only interested in the filter
importance criterion and not in optimizing results, we assess
this criterion for two pruning ratios that we assume reasonable
(15% and 25%), and adopt a single pruning ratio for the entire
pruning in each case. However, exclusively when using the
criterion by Li et al. [18], we follow their approach and prune
only the first layer of residual blocks. As for the approach by
Jordao et al. [33], we employ the settings indicated in their
paper for one-shot pruning.

We also assess our approach for large-scale image classifi-
cation. The results on the ImageNet dataset are presented in
Table III. This dataset is noticeably more challenging — in
general, the decrease in accuracy is not negligible. In terms
of reducing resource usage, the cascaded approach remains
advantageous with respect to filter pruning methods, except
when pruning ResNet56 using the `1-norm (25%). In this case,
the latter achieves an additional 4.69 p.p. FLOP reduction,
however, its memory usage reduction is 1.55% inferior, while
its accuracy decreases an additional 1.59 p.p. (percentage
points) with respect to the cascaded approach. The only case
where cascading leads to as decrease in accuracy compared
to employing only filter pruning is for the `1-norm (25%) on
ResNet20, where cascading leads to an additional 2.16 p.p.
drop in accuracy. This seems to be a reflection of the high
variance in accuracy when pruning ResNet20 on this dataset
since using the `1-norm (15%) actually leads to an increase
of 3.55 p.p., the largest accuracy improvement on this dataset.
A possible cause for this high variance is that ResNet20 has

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2019 7

TABLE III
RESOURCE-EFFICIENCY OF DISCRIMINATIVE LAYER PRUNING ON THE IMAGENET-32 DATASET. FLOP REDUCTION AND MEMORY USAGE ARE

INDICATED AS PERCENTAGE OF THE VALUES FOR THE ORIGINAL NETWORK. ACCURACY REDUCTION IS INDICATED IN PERCENTAGE POINTS, IN WHICH
NEGATIVE VALUES DENOTE IMPROVEMENT WITH RESPECT TO THE ORIGINAL NETWORK.

Method FLOPs↓ (%) Memory usage↓ (%) Accuracy↓ (top-5, p.p.)
Ours 23.08 20.48 2.09

ResNet20

`1-norm (15%) 14.24 7.68 0.35
Ours + `1-norm (15%) 33.72 25.47 −3.55
`1-norm (25%) 24.52 13.09 2.44
Ours + `1-norm (25%) 41.84 29.28 4.60
PLS/VIP 6.40 4.33 3.20
Ours + PLS/VIP 28.18 23.12 2.92
Ours 11.25 11.05 −2.10

ResNet56

`1-norm (15%) 14.47 8.54 3.80
Ours + `1-norm (15%) 20.15 16.09 3.39
`1-norm (25%) 24.84 14.54 4.48
Ours + `1-norm (25%) 20.15 16.09 2.89
PLS/VIP 9.27 5.73 3.82
Ours + PLS/VIP 20.15 16.09 2.78
Ours 31.67 31.93 1.60

ResNet110

`1-norm (15%) 14.52 8.78 5.29
Ours + `1-norm (15%) 41.25 36.54 6.28
`1-norm (25%) 24.92 14.94 5.88
Ours + `1-norm (25%) 48.68 40.18 6.66
PLS/VIP 11.77 6.85 5.43
Ours + PLS/VIP 38.62 35.26 6.27

the smallest capacity among the compared networks, leading
to a higher sensitivity to pruning.

Aside from the aforementioned cases, cascading is always
advantageous. When the cascaded approach presents larger
decrease in accuracy, it is within one percent of the de-
crease when using only filter pruning, while still providing
substantially larger reductions in computational cost. More
specifically, the relative increase in resource-efficiency of
cascading ranges from 8.67% to 30.88% for FLOP reduction
and from 8.22% to 29.79% for memory usage reduction.

While FLOP count is a useful estimate of computational
cost, it does not necessarily translate into prediction time due
to factors such as locality of reference (i.e., fetching from
memory) and compiler optimizations [50]. For this reason,
we compare the prediction time of a model compressed using
discriminative layer pruning and the previously considered
filter pruning approaches. The average prediction time for
each of the resulting models are presented in Fig. 4 for
ResNet110 on ImageNet-32 (the same models reported in
Table III). Despite achieving different and substantial FLOP
reduction, the filter pruning methods lead to models with
similar prediction time when used individually. The cascaded
models, on the other hand, result in models with substantially
smaller prediction time, which are also more consistent with
their FLOP reduction. This is likely because there is a serial
factor during prediction — to compute convolutions in one
layer, the model must wait for the output of the previous
layer. The deeper the network, the larger the effect of this
factor, consequently, the cascaded approach mitigates this by
reducing depth before removing filters.

Since the amount of depth reduction provides additional in-
sight to interpret the resource-efficiency of the pruned models,

35

30

25

20

15

10

5

0

P
re

d
ic

tio
n

tim
e

(m
ill

is
ec

on
ds

)

PLS/VIP
PLS/VIP
Ours +ℓ1-norm

(15%)
Ours + Ours +
ℓ1-norm
(15%)

ℓ1-norm
(25%) ℓ1-norm

(25%)

Fig. 4. Average prediction time using a ResNet110 model compressed by
different pruning methods. The input is a 32×32 RGB image and each average
prediction time was computed from 30 predictions. The model was pre-trained
on the ImageNet-32 dataset. Error bars indicate the 95% confidence interval.

we present the depth reduction of our approach in Table IV.
The results indicate that up to 31% of depth was removed — in
the case of CIFAR-10, with accuracy within one percentage
point of the original network. Note that this is before any
additional pruning, so one-third of the network is pruned
away, resulting in almost no degradation in accuracy, even
before searching for redundant filters. The fact that this simple
approach leads to such high resource-efficiency is a strong
argument for the plasticity of neural networks.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2019 8

TABLE IV
DEPTH OF RESIDUAL NETWORKS COMPRESSED USING DISCRIMINATIVE

LAYER PRUNING. THE NUMBERS IN PARENTHESES INDICATE THE
PERCENTAGE OF CONVOLUTIONAL LAYERS REMOVED, WHILE THE

ORIGINAL NUMBER OF LAYERS IN EACH MODEL IS INDICATED BY THE
SUFFIX TO ITS NAME. FOR THE CIFAR-10 DATASET, THE PRUNED MODELS
HAVE TOP-1 ACCURACY WITHIN ONE PERCENT OF THE ORIGINAL MODEL.

Model
ResNet20 ResNet56 ResNet110

CIFAR-10 18 (↓10%) 40 (↓29%) 76 (↓31%)
ImageNet-32 16 (↓20%) 50 (↓11%) 76 (↓31%)

TABLE V
RESOURCE-EFFICIENCY OF LAYER PRUNING ON A MOBILENET TRAINED

ON THE IMAGENET DATASET.

Method
FLOPs↓

(%)
Accuracy↓

(top-1, p.p.)
Parameters↓

(%)
Shallow MobileNet 53.20 5.3 30.95

Ours 11.18 5.3 47.62

E. Pruning Layers in Compact Networks

We performed an experiment with a MobileNet [51] trained
on ImageNet to assess the efficacy of our layer pruning ap-
proach on a network which is already compact by design. We
report results for our approach and for the Shallow MobileNet
presented in the original paper. The latter is a variant of
the MobileNet comprised by the baseline network with five
14×14×512 layers removed.

Our results are presented in Table V. While our approach
preserves as much accuracy as Shallow MobileNet, the latter
achieves significantly more FLOP reduction since it removes
layers precisely where several large feature maps would be
computed. However, this approach is handcrafted by the au-
thors of the architecture — there is no explicit criterion for this
choice. Our approach, on the other hand, is fully automatic,
generally applicable, and still removes a substantial amount
of FLOPs. Moreover, due to our greedy policy, our approach
removes significantly more parameters (i.e., an additional
16.67% — 0.7M), leading to a more compact network model.

F. Comparison with the State-of-the-Art

We compare our approach to several other state-of-the-art
pruning methods. Considering that our comparison is based
on the values reported by the authors of each method, the
assessment is restricted to ResNet56 on the CIFAR-10 dataset
since it is the most reported setting based on residual networks.
Note that for this comparison, in contrast to the cascading
experiments in the last section, the results for Li et al. [18] (A),
(B) and Jordao et al. [33] are presented for the best configura-
tions reported in their papers since we are now interested in the
methods themselves instead of their pruning criteria. Table VI
presents the resource-efficiency of the compared methods.
Since the decrease in accuracy is within one percentage point
of the original network for all methods, we assume that it is
negligible and consider that a superior FLOP reduction implies
better resource-efficiency.

Among the compared methods, our discriminative layer
pruning approach cascaded with iterated PLS/VIP filter prun-

TABLE VI
COMPARISON WITH STATE-OF-THE-ART METHODS. THE ACCURACY

DECREASE (INDICATED IN PERCENTAGE POINTS) IS WITHIN ONE PERCENT
OF THE ORIGINAL NETWORK FOR ALL METHODS. THE RESULTS IN EACH

SECTION ARE ORDERED BY FLOP REDUCTION.

Method
FLOPs↓

(%)
Accuracy↓

(top-1, p.p.)
Jordao et al. [33] (8 iter.) 52.56 −0.62
He et al. [52] 50.00 0.90
Zhuang et al. [31] 47.08 −0.01
Yu et al. [30] 43.61 0.03
Li et al. (B) [18] 27.60 −0.02
Li et al. (A) [18] 10.40 −0.06
Ours + PLS/VIP (6 iter.) 62.69 0.91
Ours + `1-norm (25%) 47.37 0.82
Ours + PLS/VIP (1 iter.) 36.70 0.45
Ours 30.00 0.98

ing is the most resource-efficient, achieving a 62.69% FLOP
reduction. Note that we present results for our approach cas-
caded with both one-shot and iterative PLS/VIP filter pruning.
The former corresponds to the setting we employed for the cas-
cading experiments in the previous section (a single iteration),
while the latter follows the results of Jordao et al. [33], which
show that this criterion is more effective when performed for
several iterations. On that note, the approach by Jordao et
al. [33] achieved a 52% FLOP reduction, the second highest
resource-efficiency in our assessment, further demonstrating
the effectiveness of PLS/VIP as a pruning criterion. However,
while Jordao et al. [33] achieve their optimal result with eight
iterations, our cascaded approach achieves its optimal and
substantially superior result with only six iterations, indicating
that cascaded layer pruning is indeed advantageous. Moreover,
performing iterative pruning on a shallower network is more
efficient, since it reduces the computational cost of fine-tuning.

The approach by He et al. [52] is the third most resource-
efficient, achieving a 50% FLOP reduction. while discrimina-
tive layer pruning cascaded with `1-norm (25%) pruning and
the approach by Zhuang et al. [31] have the fourth and fifth
best results, with FLOP reductions of 47.37% and 47.08%,
respectively. At this point it is important to highlight that four
of the five top results are based on discriminative pruning.
The exception is the approach by He et al. [52], which em-
ploys a reinforcement learning framework. The discriminative
approaches are arguably simpler, since they are based on
straightforward subspace projections or loss functions.

While not as close to the top-performing method as the pre-
vious three methods, the approach proposed by Yu et al. [30]
still removes 43.61% of FLOPs. This demonstrates that, while
not as competitive as employing a discriminative criterion,
its importance propagation strategy is in fact effective. The
proposed approach cascaded with one-shot PLS/VIP filter
pruning removes 36.70% of FLOPs, which is significantly
less than other discriminative approaches, which is expected
since this criterion performs better when iterated [33], but still
superior to the `1-norm approach by Li et al. [18].

Surprisingly, the proposed layer pruning approach even
without cascading still outperforms the `1-norm approach by

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2019 9

Li et al. [18] in both of its configurations. Since the latter
approach is not data-driven, this result is reasonable, but
considering that this approach relies handcrafted adjustments,
such as several empirically defined pruning ratios and layers
to skip due to sensitivity to pruning, it is interesting that an
approach that is essentially a truncation of the network based
on a discriminative criterion can outperform it.

G. Summary and Discussion

There are several takeaways from our results. We showed
that a straightforward layer pruning approach is capable of
reducing between 10% and 31% of the network depth with
modest decrease in accuracy, or at almost no decrease at all
in the case of the CIFAR-10 dataset. The fact that a change as
drastic as removing several layers from CNNs (more than 30
layers in the case of ResNet110) can come at such a modest
cost in predictive power demonstrates that employing very
deep networks in a one-size-fits-all manner is wasteful and
inadequate for resource-constrained systems. Moreover, while
we cascaded our approach with only two simple, but represen-
tative, baselines — magnitude-based and discriminative filter
pruning, to enable a more extensive assessment, our results
suggest that it is likely that more sophisticated state-of-the-art
pruning methods would also be improved by this approach.

Even when competing methods achieve similar FLOP re-
duction, our assessment of prediction time showed that our
approach leads to shorter prediction time. The reason is
possibly the dependency relation between consecutive layers
in the network — one layer must wait for the output of the
preceding layer before computing its own feature map. This
leads to serialization in the network, which is proportional the
network depth and is consequently mitigated by layer pruning.

V. CONCLUSIONS

We introduced a pruning approach that reduces the network
depth by removing layers according to a discriminative cri-
terion based on Partial Least Squares (PLS). This criterion
is used to calculate importance scores that are used in a
greedy strategy that sequentially removes unimportant layers.
This approach can be cascaded with other pruning approaches
and it was assessed when cascaded with two filter pruning
baselines: a magnitude-based approach and a discriminative
approach. Our results demonstrate that the cascaded approach
improves resource-efficiency substantially in practically all
cases. When cascaded with iterated filter pruning using the
PLS/VIP criterion, it achieves resource-efficiency superior
to state-of-the-art methods. Moreover, depth pruning reduces
serialization in the network, leading to improved prediction
time compared to methods that prune filters across all layers.

ACKNOWLEDGMENTS

The authors would like to thank the Brazilian Na-
tional Research Council – CNPq (Grants #311053/2016-
5 and #438629/2018-3), the Minas Gerais Research Foun-
dation – FAPEMIG (Grants APQ-00567-14 and PPM-
00540-17) and the Coordination for the Improvement of
Higher Education Personnel – CAPES (DeepEyes Project).

This study was financed in part by the Coordenação de
Aperfeiçoamento de Pessoal de Nı́vel Superior – Brasil
(CAPES) - Finance Code 001.

REFERENCES

[1] Yann LeCun, Bernhard E. Boser, John S. Denker, Donnie Henderson,
Richard E. Howard, Wayne E. Hubbard, and Lawrence D. Jackel,
“Handwritten digit recognition with a back-propagation network,” in
Adv. in Neural Inf. Process. Syst., 1990, pp. 396–404.

[2] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton, “ImageNet
classification with deep convolutional neural networks,” in Adv. in
Neural Inf. Process. Syst., 2012, pp. 1097–1105.

[3] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev
Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla,
Michael Bernstein, Alexander C. Berg, and Li Fei-Fei, “ImageNet large
scale visual recognition challenge,” Int. J. of Comput. Vision, vol. 115,
no. 3, pp. 211–252, 2015.

[4] Sergey Ioffe and Christian Szegedy, “Batch normalization: Accelerating
deep network training by reducing internal covariate shift,” in Proc. of
the Int. Conf. on Mach. Learn., 2015, pp. 448–456.

[5] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander A.
Alemi, “Inception-v4, Inception-ResNet and the impact of residual
connections on learning,” in Proc. of the AAAI Conf. on Artif. Intell.,
2017.

[6] Karen Simonyan and Andrew Zisserman, “Very deep convolutional
networks for large-scale image recognition,” in Proc. of the Int. Conf.
on Learn. Representations, 2015.

[7] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew
Rabinovich, “Going deeper with convolutions,” in Proc. of the IEEE
Conf. on Comput. Vision and Pattern Recognition, 2015, pp. 1–9.

[8] Rupesh K. Srivastava, Klaus Greff, and Jürgen Schmidhuber, “Training
very deep networks,” in Adv. in Neural Inf. Process. Syst., 2015, pp.
2377–2385.

[9] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, “Deep
residual learning for image recognition,” in Proc. of the IEEE Conf.
on Comput. Vision and Pattern Recognition, 2016, pp. 770–778.

[10] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q.
Weinberger, “Densely connected convolutional networks,” in Proc. of
the IEEE Conf. on Comput. Vision and Pattern Recognition, 2017, pp.
4700–4708.

[11] Song Han, Huizi Mao, and William J. Dally, “Deep compression: Com-
pressing deep neural networks with pruning, trained quantization and
huffman coding,” in Proc. of the Int. Conf. on Learn. Representations,
2016.

[12] Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff Dean,
“Efficient neural architecture search via parameters sharing,” in Proc.
of the Int. Conf. on Mach. Learn., 2018, pp. 4095–4104.

[13] Geoffrey F. Miller, Peter M. Todd, and Shailesh U. Hegde, “Designing
neural networks using genetic algorithms,” in Proc. of the Int. Conf. on
Genetic Algorithms, 1989, vol. 89, pp. 379–384.

[14] Dario Floreano, Peter Dürr, and Claudio Mattiussi, “Neuroevolution:
from architectures to learning,” Evolutionary Intell., vol. 1, no. 1, pp.
47–62, 2008.

[15] Barret Zoph and Quoc V. Le, “Neural architecture search with reinforce-
ment learning,” in Proc. of the Int. Conf. on Learn. Representations,
2017.

[16] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and
Yoshua Bengio, “Binarized neural networks,” in Adv. in Neural Inf.
Process. Syst., 2016, pp. 4107–4115.

[17] Hao Li, Soham De, Zheng Xu, Christoph Studer, Hanan Samet, and
Tom Goldstein, “Training quantized nets: A deeper understanding,” in
Adv. in Neural Inf. Process. Syst., 2017, pp. 5811–5821.

[18] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter
Graf, “Pruning filters for efficient convnets,” in Proc. of the Int. Conf.
on Learn. Representations, 2017.

[19] Yihui He, Xiangyu Zhang, and Jian Sun, “Channel pruning for
accelerating very deep neural networks,” in Proc. of the IEEE Int. Conf.
on Comput. Vision, 2017, pp. 1389–1397.

[20] Yann LeCun, John S. Denker, and Sara A. Solla, “Optimal brain
damage,” in Adv. in Neural Inf. Process. Syst., 1990, pp. 598–605.

[21] Babak Hassibi and David G. Stork, “Second order derivatives for
network pruning: Optimal brain surgeon,” in Adv. in Neural Inf. Process.
Syst., 1993, pp. 164–171.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2019 10

[22] H. Wold, Partial Least Squares, pp. 581–591, John Wiley & Sons,
2006.

[23] Hengyuan Hu, Rui Peng, Yu-Wing Tai, and Chi-Keung Tang, “Network
trimming: A data-driven neuron pruning approach towards efficient deep
architectures,” arXiv preprint arXiv:1607.03250, 2016.

[24] Chunhui Jiang, Guiying Li, Chao Qian, and Ke Tang, “Efficient
DNN neuron pruning by minimizing layer-wise nonlinear reconstruction
error,” in Proc. of the Int. Joint Conf. on Artif. Intell. AAAI Press, 2018,
pp. 2298–2304.

[25] Qiangui Huang, Kevin Zhou, Suya You, and Ulrich Neumann, “Learning
to prune filters in convolutional neural networks,” in Proc. of the IEEE
Winter Conf. on Appl. of Comput. Vision. IEEE, 2018, pp. 709–718.

[26] Jonathan Frankle and Michael Carbin, “The lottery ticket hypothesis:
Finding sparse, trainable neural networks,” in Proc. of the Int. Conf. on
Learn. Representations, 2019.

[27] Sajid Anwar, Kyuyeon Hwang, and Wonyong Sung, “Structured pruning
of deep convolutional neural networks,” ACM J. on Emerging Technol.
in Comput. Syst., vol. 13, no. 3, pp. 32, 2017.

[28] Huizi Mao, Song Han, Jeff Pool, Wenshuo Li, Xingyu Liu, Yu Wang, and
William J Dally, “Exploring the granularity of sparsity in convolutional
neural networks,” in Proc. of the IEEE Conf. on Comput. Vision and
Pattern Recognition Workshops, 2017, pp. 13–20.

[29] Jian-Hao Luo, Jianxin Wu, and Weiyao Lin, “ThiNet: A gilter level
pruning method for deep neural network compression,” in Proc. of the
IEEE Int. Conf. on Comp. Vision, 2017, pp. 5058–5066.

[30] Ruichi Yu, Ang Li, Chun-Fu Chen, Jui-Hsin Lai, Vlad I. Morariu,
Xintong Han, Mingfei Gao, Ching-Yung Lin, and Larry S. Davis, “NISP:
Pruning networks using neuron importance score propagation,” in Proc.
of the IEEE Conf. on Comput. Vision and Pattern Recognition, 2018,
pp. 9194–9203.

[31] Zhuangwei Zhuang, Mingkui Tan, Bohan Zhuang, Jing Liu, Yong Guo,
Qingyao Wu, Junzhou Huang, and Jinhui Zhu, “Discrimination-aware
channel pruning for deep neural networks,” in Adv. in Neural Inf.
Process. Syst., 2018, pp. 875–886.

[32] William Robson Schwartz, Aniruddha Kembhavi, David Harwood, and
Larry S Davis, “Human detection using partial least squares analysis,”
in Proc. of the IEEE Int. Conf. on Comp. Vision, 2009, pp. 24–31.

[33] Artur Jordao, Ricardo Kloss, Fernando Yamada, and William Rob-
son Schwartz, “Pruning deep neural networks using partial least
squares,” in Brit. Mach. Vision Conf. Workshops: Embedded AI for
Real-Time Machine Vision, 2019.

[34] Tolga Bolukbasi, Joseph Wang, Ofer Dekel, and Venkatesh Saligrama,
“Adaptive neural networks for efficient inference,” in Proc. of the Int.
Conf. on Mach. Learn., 2017, pp. 527–536.

[35] Dimitrios Stamoulis, Ting-Wu Rudy Chin, Anand Krishnan Prakash,
Haocheng Fang, Sribhuvan Sajja, Mitchell Bognar, and Diana Mar-
culescu, “Designing adaptive neural networks for energy-constrained
image classification,” in Proc. of the Int. Conf. on Computer-Aided Des.
ACM, 2018, p. 23.

[36] Zuxuan Wu, Tushar Nagarajan, Abhishek Kumar, Steven Rennie, Larry S
Davis, Kristen Grauman, and Rogerio Feris, “Blockdrop: Dynamic
inference paths in residual networks,” in Proc. of the IEEE Conf. on
Comput. Vision and Pattern Recognition, 2018, pp. 8817–8826.

[37] Xin Wang, Fisher Yu, Zi-Yi Dou, Trevor Darrell, and Joseph E. Gon-
zalez, “Skipnet: Learning dynamic routing in convolutional networks,”
in Proc. of the Eur. Conf. on Comput. Vision, 2018, pp. 409–424.

[38] Andreas Veit and Serge Belongie, “Convolutional networks with
adaptive inference graphs,” in Proc. of the Eur. Conf. on Comput. Vision,
2018, pp. 3–18.

[39] Mohammad Saeed Shafiee, Mohammad Javad Shafiee, and Alexander
Wong, “Efficient inference on deep neural networks by dynamic
representations and decision gates,” arXiv preprint arXiv:1811.01476,
2018.

[40] Tahir Mehmood, Kristian Hovde Liland, Lars Snipen, and Solve Sæbø,
“A review of variable selection methods in partial least squares regres-
sion,” Chemometrics and Intell. Lab. Syst., vol. 118, pp. 62–69, 2012.

[41] Alex Krizhevsky and Geoffrey Hinton, “Learning multiple layers of
features from tiny images,” Tech. Rep., University of Toronto, 2009.

[42] Guodong Guo and Guowang Mu, “Simultaneous dimensionality re-
duction and human age estimation via kernel partial least squares
regression,” in Proc. of the IEEE Conf. on Comput. Vision and Pattern
Recognition. IEEE, 2011, pp. 657–664.

[43] Guodong Guo and Guowang Mu, “Joint estimation of age, gender and
ethnicity: CCA vs. PLS,” in Proc. of the IEEE Int. Conf. and Workshops
on Autom. Face and Gesture Recognition. IEEE, 2013, pp. 1–6.

[44] Mengyi Liu, Ruiping Wang, Zhiwu Huang, Shiguang Shan, and Xilin
Chen, “Partial least squares regression on grassmannian manifold for

emotion recognition,” in Proc. of the ACM Int. Conf. on Multimodal
Interact. ACM, 2013, pp. 525–530.

[45] Giorgio Roffo, Simone Melzi, and Marco Cristani, “Infinite feature
selection,” in Proc. of the IEEE Int. Conf. on Comput. Vision, 2015, pp.
4202–4210.

[46] Giorgio Roffo, Simone Melzi, Umberto Castellani, and Alessandro
Vinciarelli, “Infinite latent feature selection: A probabilistic latent graph-
based ranking approach,” in Proc. of the IEEE Int. Conf. on Comput.
Vision, 2017, pp. 1398–1406.

[47] Nouna Kettaneh, Anders Berglund, and Svante Wold, “PCA and PLS
with very large data sets,” Comput. Statist. & Data Anal., vol. 48, no.
1, pp. 69–85, 2005.

[48] Deepak Mittal, Shweta Bhardwaj, Mitesh M. Khapra, and Balaraman
Ravindran, “Recovering from random pruning: On the plasticity of
deep convolutional neural networks,” in IEEE Winter Conf. on Appl.
of Comput. Vision. IEEE, 2018, pp. 848–857.

[49] Song Han, Jeff Pool, John Tran, and William Dally, “Learning both
weights and connections for efficient neural network,” in Adv. in Neural
Inf. Process. Syst., 2015, pp. 1135–1143.

[50] Shuochao Yao, Yiran Zhao, Huajie Shao, ShengZhong Liu, Dongxin Liu,
Lu Su, and Tarek Abdelzaher, “FastDeepIoT: Towards understanding
and optimizing neural network execution time on mobile and embedded
devices,” in Proc. of the ACM Conf. on Embedded Network. Sensor
Syst. ACM, 2018, pp. 278–291.

[51] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko,
Weijun Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam,
“Mobilenets: Efficient convolutional neural networks for mobile vision
applications,” arXiv preprint arXiv:1704.04861, 2017.

[52] Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and Song Han,
“AMC: AutoML for model compression and acceleration on mobile
devices,” in Proc. of the Eur. Conf. on Comput. Vision, 2018, pp. 784–
800.

Artur Jordao received the B.Sc. degree in computer
science from the University of Western São Paulo,
Presidente Prudente, Brazil, and the M.Sc. degree
in computer science from the Federal University
of Minas Gerais, Belo Horizonte, Brazil, where he
is currently working towards the Ph.D degree in
computer science.

His research interests include machine learning
and pattern recognition focused on computer vision
applications.

Maiko Lie received the B.Sc. and M.Sc. degrees in
computer engineering from the Federal University
of Technology – Paraná, Curitiba, Brazil. He is cur-
rently working towards the Ph.D degree in computer
science in the Federal University of Minas Gerais,
Belo Horizonte, Brazil.

His research interests include pattern recognition,
computer vision, and image processing.

William Robson Schwartz received the B.Sc. and
M.Sc. degrees in computer science from Federal
University of Paraná, Curitiba, Brazil, and the Ph.D.
degree in computer science from the University of
Maryland, College Park, MD, USA.

He is a Professor with the Department of Com-
puter Science, Federal University of Minas Gerais,
Belo Horizonte, Brazil and associate editor for the
IEEE Transactions on Information Forensics and
Security. His research interests include computer
vision, computer forensics, biometrics, and image

processing.

