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A method for generating 3D thermal models
with decoupled acquisition

Abstract

Background and Objective: Both thermal imaging and 3D scanning offer
convenient advantages for medical applications, namely, being contact-
less, non-invasive and fast. Consequently, many approaches have been
proposed to combine both sensing modalities in order to acquire 3D ther-
mal models. The predominant approach is to affix a 3D scanner and a
thermal camera in the same support and calibrate them together. While
this approach allows straightforward projection of thermal images over
the 3D mesh, it requires their simultaneous acquisition. In this work, a
method for generation of 3D thermal models that allows combination of
separately acquired 3D mesh and thermal images is presented. Among the
advantages of this decoupled acquisition are increased modularity of ac-
quisition procedures and reuse of legacy equipment and data.
Methods: The proposed method is based on the projection of thermal im-
ages over a 3D mesh. Unlike previous methods, it is considered that the
3D mesh and the thermal images are acquired separately, so camera pose
estimation is required to determine the correct spatial positioning from
which to project the images. This is done using Structure from Motion,
which requires a series of interest points correspondences between the
images, for which the SIFT method was used. As thermal images of hu-
man skin are predominantly homogeneous, an intensity transformation
is proposed to increase the efficacy of interest point detection and make
the approach feasible. Before projection, the adequate alignment of the
3D mesh in space is determined using Particle Swarm Optimization. For
validation of the method, the design and implementation of a test object
is presented. It can be used to validate other methods and can be repro-
duced with common printed circuit board manufacturing processes.
Results: The proposed approach is accurate, with an average displace-
ment error of 1.41 mm (s = 0.74 mm) with the validation test object and
4.58 mm (s = 2.12 mm) with human subjects.
Conclusions: The proposed method is able to combine separately a ac-
quired 3D mesh and thermal images into an accurate 3D thermal model.
The results with human subjects suggest that the method can be success-
fully employed in medical applications.

Keywords: Multi-modality imaging, 3D thermography, Structure from Motion,
Scale Invariant Feature Transform.
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1 Introduction

Infrared thermography is a technique that allows estimating the temperature of
an object from its infrared emission. As every object with temperature above the
absolute zero emits infrared radiation, this sensing modality is widely applica-
ble and has been adopted in contexts such as generation of photorealistic mod-
els of architectural monuments [1], industrial inspection [2], clothing design [3],
among many others [4]. One application domain of particular interest is med-
ical diagnosis, where the contactless, non-invasive and fast measurements of
infrared thermography are especially desirable. There are several applications
of thermography in medical diagnosis, ranging from sports medicine, in which
pre and post-activity temperatures are monitored to diagnose thermoregula-
tory abnormalities [5, 6], to cancer diagnosis, in which, for instance, tempera-
ture is monitored over time to distinguish benign and malign pigmented lesions
[7, 8, 9]. In fact, any condition that influences skin surface temperature can ben-
efit from infrared thermography analysis, including tuberculine reaction [10],
stress [11], not to mention blunt trauma and other forensic applications such as
time of death estimation [12].

Another sensing modality that has been increasingly adopted in medical ap-
plications is 3D scanning (i.e. range imaging). It allows shape and size measure-
ments while sharing the above mentioned conveniences of infrared thermogra-
phy [13]. Among its medical applications are deformity detection, skin analysis
[13] and plastic surgery planning [14]. 3D models also allow 3D printing – the
production of haptic physical models by addition of physical layers – which can
be used for treatment planning, training, construction of customized prosthet-
ics, among other applications [15, 16].

Considering the similar advantages and complementary measurement in-
formation of 2D thermography and 3D scanning, several approaches for their
combined application have been proposed [17, 18, 19, 20]. This multi-modality
sensing method – 3D thermography – enhances temperature analysis with geo-
metrical information and vice-versa, improving, for instance, diagnosis of Dia-
betic Foot Disease (DFD) which involve monitoring both blood circulation (i.e.
temperature) and ulcer evolution (i.e. surface shape) [18]. Existing 3D thermog-
raphy approaches are mostly based on the integration of a thermal camera and
a 3D scanner in a single instrument by affixing them in the same structural sup-
port – a stand [17, 18, 19] or a hand-held mechanism [20]. The former approach
is more common in medical diagnosis settings, where the environment is more
easily controlled and precise data acquisition guidelines can be employed [21].
The latter is usually applied in industrial settings [20], where the environment
has a fixed configuration and the sensing device must adequate itself to its con-
straints. The aforementioned methods are characterized by the simultaneous
acquisition of both 2D thermal and 3D range data. This offers the advantage of
straightforward data combination as both sensing devices can be calibrated to-
gether, however, the necessity of simultaneous acquisition is also a significant
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limitation.
This paper presents a 3D thermography method for medical applications,

which is based on the projection of a series of thermal images over a 3D mesh,
generating a 3D thermal model – without the necessity of simultaneous acqui-
sition of 2D and 3D data, unlike previous methods. Among the advantages of
this decoupling are modularization of the acquisition procedures and the pos-
sibility of legacy equipment reuse. As 3D scanning technologies expand a wide
range of accuracy/cost trade-off and different sensing modalities can be offered
by different clinics, a decoupled and more modular acquisition process allows
easy adaption to different time and cost circumstances. Moreover, this approach
also allows reuse of previously acquired data, as long as adequate data acquisi-
tion guidelines are followed to maintain similar acquisition conditions.

The projection of thermal images over a 3D mesh, in methods that acquire
data from both sensing modalities simultaneously, is trivial [18]. On the other
hand, camera pose estimation is required when data acquisition is decoupled,
as is the case in this work. This is done using Structure from Motion (SfM), which
requires a series of interest point matches between images from different per-
spectives [22]. Due to the low-resolution and homogeneous aspect of thermal
images, which hinders interest point detection, this approach has been unex-
plored in thermography. To address this, an image intensity transformation is
presented, which significantly improves interest point detection in thermal im-
ages and allows a sufficient number of matches for adequate camera pose es-
timation. The thermal images are projected from the estimated poses over the
3D mesh, which is aligned through an optimization model solved via Particle
Swarm Optimization (PSO), resulting in the final 3D thermal model.

A validation of the method is presented using a test object, called Heat Tex-
ture Test Object (HTTO), for which the motivation, design and evaluation is also
described. Additionally, a case study with human subjects, with quantitative
evaluation, is presented to demonstrate the applicability of the method in the
context of medical diagnosis. The results show that the approach successfully
generates accurate 3D thermal models, presenting average displacement error
of 1.41 mm (s = 0.74 mm) for the test object and 4.58 mm (s = 2.12 mm) for the
human subjects.

The remainder of this paper is organized as follows. Section 2 shows a gen-
eral overview of the proposed method, followed by a detailed explanation of its
stages. Section 3 describes the design and implementation of the HTTO, includ-
ing the experiments used to determine its adequate characteristics. Section 4
presents qualitative and quantitative evaluation of the proposed method on the
HTTO and on human subjects, with a discussion of the obtained results. Section
6 concludes this work, indicating future improvements and research directions.
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2 Proposed Method

The proposed method is capable of projecting 2D thermal images of an object
onto its respective 3D mesh, which does not need to be acquired simultane-
ously with the thermal images. Figure 1 describes the main steps of the proposed
method, which are detailed as follows.

3D Mesh Acquisition

…

ermal Image Acquisition Camera Pose Estimation

…

3D Mesh Alignment

3D ermal
Model

Object

ermal Image Projection

39oC

25oC

Figure 1: Overview of the proposed method.

2.1 3D Mesh Acquisition

For the acquisition of the 3D mesh, a Creaform 3D Gemini scanner was used –
it has a resolution of 0.4 mm in the X and Y axes and of 0.2 mm in the Z axis.
The manufacturer’s recommendation is for the acquisition to be made from a
distance of approximately one meter from the object [23]. To obtain the com-
plete mesh, the acquisition must be made from several angles. The respective
patches are registered to form a single 3D object using the ICP (Iterative Closest
Point) algorithm [24] through the Geomagic software.

2.2 Thermal Image Acquisition

For the acquisition of the thermal images, a FLIR infrared camera model A325
was used. It is sensitive to wavelengths of 7.5 to 13 µm and can record temper-
atures from -20 to 120 °C with a thermal resolution of 0.05 °C, at 30 frames per
second with a resolution of 320×240 pixels [25]. The lens used has a nominal
focal length of 18 mm.

During the thermography experiments, it was observed that long periods
in the acquisition of the images caused significant temperature variations on
the skin surface. To address this, a rotating system (Figure 2) was designed and
assembled to allow faster and more accurate acquisition of the thermal images.
The system provides adjustment of distance d , height h, and angulation of the
thermal camera (i.e. α, β, θ and γ).

A motor with speed control coupled to the rotation axisω (ranging from 0 to
360°) allows capturing images at multiple angles while maintaining a fixed dis-
tance d to the object. The acquisition of all thermal images was conducted in a
room with an especially built air-conditioner that allows control of temperature
and humidity variations, and air circulation.
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Figure 2: Swivel stand for thermal image acquisition.

The acquired sequence of thermal images is exported to the CSV (Comma
Separated Values) format using the FLIR Tools 4.0 software. Obtained values are
expressed in degrees Celsius, with each value representing a pixel of the image.
CSV files are then converted to PNG image format using MATLAB. A selection of
70 thermal images, captured at uniformly spaced angles and fixed distance from
the object, was adopted for projection onto the 3D mesh.

2.3 Camera Pose Estimation

Structure from Motion (SfM) is a process that simultaneously estimates the 3D
structure of an object and the camera poses during image acquisition. In gen-
eral, Bundle Adjustment (BA) is used for this purpose [26], while SfM is a more
general term that aggregates the whole set of techniques used. Since thermal
images typically have a low resolution and do not actually describe geometry in-
formation, the 3D structure output from SfM is not accurate or reliable enough
for our purposes. Consequently, the 3D structure is acquired from a 3D scanner,
as described in Section 2.1, while SfM is used only for camera pose estimation.
For this purpose, a minimal number of correspondences between image points,
acquired from multiple viewpoints, is required. These correspondences are ob-
tained using detection, description and matching of interest points in these im-
ages.

Thermal images of human skin do not have as much details as their cor-
responding visible light images. There are no abrupt variations in tempera-
ture, thus, they tend to be more homogeneous [27]. This characteristic makes
the detection and matching of interest points difficult [18, 28, 29]. Consider-
ing this, and the fact that SfM was originally designed for visible light images, a
pre-processing step was devised to adequate thermal images for this process. A
transformation m(T ) is proposed on the intensity levels T of the thermal image
(normalized in the [0, 255] range), in order to increase the number of regions
with high-contrast texture and, consequently, the number of interest points de-
tected. The transformation m(T ) is described in Equation 1:

m(T ) = 255

2

(
1− cos

(
2π f T

255

))
, (1)
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in which f is an adjustable parameter that is determined empirically for our ex-
periments ( f = 3.5). This transformation creates artificial contrasts in the inten-
sity levels of the image, emphasizing variations that were previously too subtle to
be detected, consequently, increasing the number of interest points detected. At
first, the usefulness of such artificial variations might seem dubious for interest
point matching, given that images captured at different instants and from differ-
ent perspectives will hardly maintain the same intensities for the corresponding
locations – making these additional interest points poor candidates for match-
ing. However, even though this is the case for visible light images, it is not the
case for thermal images. The effect of illumination in the acquisition of different
images is irrelevant for thermal images, since it does not cause any significant
variation in temperature. Thus, even though the transformation described in
Equation 1 creates artificial contrasts, it does not have any significant negative
effect on matching, given that the created contrasts are consistent between dif-
ferent thermal images. Figure 3 shows the effect of the intensity transformation
described by Equation 1 on a thermal image – it significantly increases the num-
ber of interest points detected.
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Figure 3: Effect of the intensity transformation on interest point detection (in red) in
thermal images. The images are shown with a grayscale palette to facilitate the inter-
pretation of the transformation. (a) Original intensity levels. (b) Transformed intensity
levels.

The detection and description of interest points is done using the SIFT (Scale
Invariant Feature Transform) method [30] through the SiftGPU software [31] and
the VisualSFM interface [32]. The matching between interest points in the differ-
ent images is made with the nearest point based on the Euclidean distance be-
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tween their descriptors, that is, an interest point in an image is matched with the
point in another image which minimizes the Euclidean distance between their
SIFT descriptors. The inconsistent matches are then filtered through RANSAC
(Random Sample Consensus) [33].

With the set of consistent matches, it is possible to estimate the camera
poses through Bundle Adjustment, using the Parallel Bundle Adjustment (PBA)
software [34]. Additionally, it is possible to significantly improve the precision
of pose estimation by incorporating the internal parameters of the camera – the
intrinsic matrix K , described in Equation 2:

K =


fx ax cx 0
ay fy cy 0
0 0 1 0
0 0 0 1

=


720 0 160 0

0 720 120 0
0 0 1 0
0 0 0 1

 . (2)

The matrix K is previously computed and is the same for all poses, since
all thermal images were captured by the same camera. At last, determining the
camera poses consists in the computation of the extrinsic matrix G , described
by Equation 3:

G = R−1
x ·R−1

y ·R−1
z ·T −1

x ·T −1
y ·T −1

z , (3)

in which the matrices R−1
{x ,y,z} and T −1

{x ,y,z} are, respectively, the inverses of the
rotation and translation matrices in three dimensions.

Figure 4 shows the pose estimation and the obtained sparse point cloud.
Figures 4 (a) and (b) show the pose estimation without and with the previous
calculation of the intrinsic matrix, respectively. Knowing that the swivel stand
was used for acquisition of the thermal images and that the camera performed
a circular movement around the subject, it is possible to notice that, with the
intrinsic matrix, the real positioning of the camera is estimated much more ac-
curately (Figure 4 (b)).

(a) (b)

Figure 4: Camera pose estimation. (a) Without initialization of the intrinsic matrix. (b)
With initialization of the intrinsic matrix.
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2.4 3D Mesh Alignment

For an adequate projection of the thermal images onto the 3D mesh, the mesh
must be aligned in the same plane of the camera. The desired alignment is the
one that minimizes the overlap error between the thermal image and the two-
dimensional rendering of the 3D model. The rendering of the 3D model in a
specific pose is determined by the transformation described in Equation 4:

pout = K ·G ·pi n , (4)

in which pi n is a point in the model, K and G are the intrinsic and extrinsic
matrices of the camera, respectively.

To determine overlap error, the rendering R of the 3D model and the thermal
image T are thresholded to segment the object of interest, resulting in binary im-
ages RT and TT . The overlap error Er r is the number of pixels that indicate the
object in one of the images but not in both – the pixels in which the segmenta-
tion in the two images do not overlap, as described in Equation 5:

Er r (RT ,TT ) = (RT ∪TT )− (RT ∩TT ). (5)

Figure 5 illustrates overlap error, in which red and orange pixels correspond
to the segmentation of the object in the rendering of the 3D model and in the
thermal image, respectively, while the white pixels indicate the overlap between
the segmentation of both images. The error is the sum of the number of red and
orange pixels.

Figure 5: Overlap error between the rendering of the 3D model and the thermal image.
They are indicated by white, red and orange, respectively.

From function Er r , that measures the error (i.e. the quality of the align-
ment), the appropriate determination of the alignment can be modeled as an
optimization problem. For its solution, Particle Swarm Optimization (PSO), which
is a swarm-based metaheuristic algorithm [35], was adopted. The choice of this
algorithm was motivated by the fact that it presents the shortest convergence
time in the benchmark performed by Vesterstrom and Thomsen (2004) [36]. The
PSO searches the solution space for a vector with seven elements related to the
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alignment of the 3D model, i.e. (x, y , z, θ, ρ, φ, s)T , the first three elements
corresponding to position, the next three to rotation and the last one to scale.

At each iteration of the PSO, the overlap between the rendering of the 3D
model with the thermal image is done for each of the 70 previously estimated
poses (i.e. intrinsic and extrinsic matrices). The accumulated error for all poses
characterizes the performance of the current alignment – PSO searches for the
solution which minimizes this error.

2.5 Thermal Image Projection

After aligning the 3D mesh, thermal images are projected onto its surface using
the MeshLab software [37]. Due to the relatively large number of thermal im-
ages projected (i.e. 70), there is a significant number of superimpositions. Thus,
the color value attributed to each point of the 3D model is a weighted average
of these projections, in which the contribution of each thermal image is propor-
tional to the distance of the camera to the point and of the point to the center of
the image (Figure 6).

c1

c2

p

Figure 6: Projection of the thermal images on the 3D mesh. Pose c1 is closer to the
point p than pose c2. The point p is also closer to the center of the image (dashed line)
in pose c1 than in pose c2. Consequently, the contribution of the projection c1 in p is
greater than the contribution of c2.

3 Heat Texture Test Object

A test object was designed to validate the general idea of the proposed approach,
providing an approximation of “ideal” conditions. In addition to demonstrating
that the proposed approach is feasible, it provides a baseline with which to com-
pare the results obtained on the more difficult case of human subject data.
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The validation of the proposed method requires a test object with the follow-
ing requirements:

i The object must be three-dimensional: the aim of the proposed method is
to combine a 3D model with thermal images, thus the test object must be a
3D object;

ii The object must be capable of significant thermal emission: the aim of the
proposed method is to combine a 3D model with thermal images, thus the
test object must emit enough heat for it to be visible to the thermal camera;

iii The object must be non-deformable: the shape of the object must be stable
during the 3D model and thermal image acquisition, otherwise, it may not
be possible to distinguish whether errors in the fusion were due to the quality
of the data or the method;

iv The object must have rich thermal texture: the proposed method depends
on interest point detection using the SIFT method, which detects them as ex-
trema in scale space. These extrema do not occur in homogeneous regions,
thus a thermal texture is required for detection of an appropriate number of
interest points.

A test object, called HTTO – Heat Texture Test Object, with the above de-
scribed properties was assembled for validation of the proposed method. Its
design is based on double layer fiberglass FR-4 printed circuit boards (PCBs)
arranged as a parallelepiped. In each board, on the layer which is internal to
the parallelepiped, PCB tracks were distributed in a closely spaced zigzag pat-
tern (described in more detail below) to approximate an uniform thermal emis-
sion when powered. The layer on the exterior of the parallelepiped has a ther-
mal marker texture, so that when the internal layer emits heat, it propagates
through regions with only PCB fiberglass, while reflecting on regions with ther-
mal marker, thus making a distinguishable pattern when viewed by a thermal
camera. This double layer approach allows arbitrary textures, since the external
layer does not need to conduct electricity.

3.1 Thermal Characteristics of PCB Elements

Before building the HTTO, a series of tests were performed in a double-layer
fiberglass FR-4 PCB. The test board has an area of 15.2 cm × 10.1 cm, and cop-
per layers with thickness of 35 µm. The layers of the board were divided into 9
regions, shown in Figure 7, with different thermal thermal conductor configu-
rations and materials. The four regions dedicated to evaluation of the heating
emission by different conductor configurations are labeled as R1, R7, R8 and R9
– implemented in a zigzag pattern, as illustrated in Figure 8. The considered
configurations are: chessboard (each square has an area of 1 cm2), various and
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uniform (with and without silkscreen). Chessboard is used in several popular
tools [38] that implement calibration techniques based on the study by Zhang
[39]. Various and uniform are variations of the chessboard pattern.

R7

R9

R8

10

15.2

10
.1

20

20
10

R1
R6

R3

R2

R4

R5

(a) (b)

Figure 7: PCB for evaluation of thermal characteristics – measurements are in millime-
ters. Each of the nine regions implements a thermal conductor configuration or a dif-
ferent material combination. (a) Top layer. (b) Bottom layer.

0.127 0.508

20

Figure 8: Tracks in the implementation of patterns in the evaluation PCB. Measure-
ments are in millimeters.

Table 1 presents the configurations in each region of the PCB. Regions ded-
icated to the evaluation of different combinations of materials are R2-R6, the
combinations are described in Table 2. Only materials which are common in
the manufacture of PCBs were considered (i.e. copper, tin-plating, varnish, silk-
screen), allowing easy reproduction by usual manufacturing processes. The ob-
jective of this preliminary study was to determine the best track configurations
and materials that provide an effective thermal marker for the HTTO.

Figure 9 shows the thermal images of regions R1, R7, R8 and R9. The heat-
ing of the region R1 results in a blurred thermal image as can be seen in Fig-
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Table 1: Thermal conductor configurations of the evaluation PCB.

Region Conductor configuration
R1 Chessboard
R7 Various
R8 Uniform
R9 Uniform with silkscreen

Table 2: Combinations of materials for the thermal conductors of the evaluation PCB.
Note that, due to the specific sequence employed in usual manufacturing processes,
there are some combinations that are unviable and were not considered.

Region Materials
R2 Varnish, silkscreen
R3 Copper, varnish, silkscreen
R4 Copper, varnish
R5 Tin-plated copper
R6 Tin-plated copper, silkscreen

ure 9 (a). The heating of region R7 , Figure 9 (b), shows that sparser patterns
simply dissipate less heat, and the various configurations are not distinguish-
able. The evaluation of the thermal images of regions R8 and R9 were done by
heating from region R8, since R9 is simply a subregion of R8 with an additional
silkscreen coating. As can be seen in Figure 9 (c), there is no significant differ-
ence in the heat emission of a uniform region with or without silkscreen. There
is heat concentration in the upper portion of region R8, which occurs due to the
heat reflectivity of the chess pattern of region R5, on the opposite layer. This
occurrence demonstrates that it is possible to heat the conductor even without
the application of electric current on it, through the application of current in the
conductor on the opposite layer.

Regions dedicated to the evaluation of the different combinations of ma-
terials are R2-R6, the combinations are described in Table 2. Only materials
which are common in the manufacture of PCBs were considered (i.e. copper,
tin-plating, varnish, silkscreen), allowing easy reproduction by usual manufac-
turing processes. Figure 10 presents the thermal images of regions R1-R6, ob-
tained with electrical current conduction on the opposite layer. The viability of
this heating method was observed previously, during the evaluation of the elec-
trical conductor configurations.

It is possible to note that, except for region R5, no combination of materials
allows a well-defined identification of the pattern by the thermal camera. PCB
fiberglass areas covered only by varnish dissipate heat, while areas covered only
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(a) (b) (c)

Figure 9: Heat emission for the different configurations of the electric/thermal conduc-
tor. (a) R1 – Chessboard (bottom layer). (b) R7 – Various (top layer). (c) R8, R9 – Uniform
(top layer).

R6

R5

R4

R3

R2

Figure 10: Heat emision for different combination of materials.

by tin-plated copper (i.e. R5) effectively block it, allowing a clear distinction
between them. This result suggests that varnish causes significant heat distri-
bution, interfering excessively in the distinction of the patterns by the thermal
camera. The silkscreen interferes less than varnish, but only marginally (i.e. the
region appears slightly darker), as can be seen by the heating in region R6. Thus,
we consider the use of tin-plated copper as the most suitable for implementa-
tion of the thermal texture.

3.2 HTTO Design and Assembly

The HTTO was designed and assembled based on the thermal characteristics
observed in the experiment described in the previous section. The specifica-
tions of the assembled object are presented below in terms of the requirements,
which were presented previously, and the specifications that fulfill these require-
ments.

i The object must be three-dimensional: the PCBs that compose the test ob-
ject were arranged in the form of a parallelepiped, with surface dimensions
of 10×15 cm and 10×10.32 cm, as shown in Figure 11;
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10.32 cm

10 cm

15 cm

Figure 11: Measurements of the assembled HTTO. The PCBs are disposed as a parallel-
epiped.

ii The object must be capable of significant thermal emission: from the ther-
mal characteristics observed in the experiments described in Section 3.1,
tin-plated copper patterns were incorporated in the external layers of the
PCBs, while the parallelepiped internal layers have a zigzag pattern of uni-
form conductor configuration. The zigzag tracks in the internal layer are
electrically powered and effectively heat the surface of the object. As the
frontal/posterior and lateral PCBs have different sizes, the electrical resis-
tance of their tracks are also different. Considering this, the resistances of
the tracks in each board were measured and they were powered with pro-
portional voltages, so that they dissipate the same power and, consequently,
have approximately the same temperature;

iii The object must be nondeformable: the HTTO is composed of fiberglass (FR-
4) boards affixed with silicone, presenting rigid structure;

iv The object must have rich textures thermal: dense and heterogeneous pat-
terns of tin-plated copper have been elaborated for the external surface of
the object. The patterns used in the manufacture of the PCBs are shown in
Figure 12.

4 Results

In this section, the evaluation results of the proposed approach with the HTTO
are presented. An assessment of the proposed intensity transformation is made
on thermal images of human subjects, to quantify the increase in interest point
detection and their robustness under different measurements. An assessment
of 3D thermal models obtained with the proposed method on human subjects
is also presented, in order to demonstrate its applicability under conditions sim-
ilar to those present in medical applications.
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Figure 12: Copper patterns of the external surface of the HTTO – there are only five
surfaces because the bottom of the parallelepiped is hollow. Top row: surfaces F1, F2.
Bottom row: surfaces F3, F4 and F5.

4.1 Method Validation

The method validation consists in assessing the displacement error between the
manually projected reference, comprised of the images in Figure 12, and the
automatically projected thermal images using the proposed method. Since the
parallelepiped has flat sides, the error can be easily evaluated per-surface as the
2D error of the matched interest points themselves.

Figure 13 (a) shows the manual projection of the PCB layout, shown in Fig-
ure 12, over a parallelepiped 3D mesh. The simulated mesh has the HTTO speci-
fied dimensions. Figure 13 (a) is the measurement reference. Figure 13 (b) shows
the thermal image projection over the same simulated mesh using the proposed
method. The thermal projections around the sides of the mesh are close to the
reference, but two aspects are noticeable. First, the top surface has a signifi-
cantly distorted projection. This is consequence of the procedure adopted for
thermal image acquisition, in which the camera translates around the test ob-
ject over a single plane, causing occlusion in regions of the object that are not
visible from the sides. Since this problem can be solved by acquisition of images
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at additional angles, we consider that it does not compromise the validity of the
method, as it contemplates the possibility of such acquisitions using the mech-
anism described in Figure 2 – therefore the evaluation follows without consid-
ering the top surface of the HTTO (F5 in Figure 12). Second, the thermal texture
presents less details than the PCB layout. This loss of fine detail is due to the
low resolution of the thermal images (i.e. 320×240). Although this aspect im-
pacts the interest point detection, it does not compromise the method because
enough interest points are detected, albeit in reduced quantity. To illustrate this,
the interest point detection, matching and filtering is presented in Figure 14.

(a) (b)

Figure 13: Qualitative evaluation of the proposed method on the HTTO. (a) Ideal 3D
model. (b) Thermal projection using the proposed method. The images are shown with
a grayscale palette to facilitate comparison with the reference.

(a) (b) (c) (d)

Figure 14: Validation of the proposed method – interest point matching for the surface
F2 of the HTTO. Interest points for the individual images are indicated in red, matches
in yellow and matching error in cyan (lines). (a) Interest points in the PCB layout. (b)
Interest points in the thermal image. (c) Matches. (d) Matches after RANSAC.

In Figure 14, a series of incorrect matches can be noticed. They were already
expected, as evidenced by experiments in stereoscopic vision and 3D recon-
struction methods [33]. To address this the matches are filtered using RANSAC.
Table 3 summarizes the results of the interest point detection and matching.
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Table 3: Number of interest points and matches in the HTTO.

Surface
Interest points

Matches
Matches

Layout Thermal after RANSAC
F1 3686 759 138 53
F2 4014 761 112 42
F3 10521 2141 102 38
F4 13980 2554 139 57

Considering that a significant number of interest point matches remain, the
displacement error between the interest points can be evaluated. A summary of
the displacement error for each surface of the HTTO is presented in Table 4, in
which it is possible to notice that the method is accurate, with a maximum error
of 3.73 mm.

Table 4: Matching error between interest points in the HTTO.

Surface
Avg. error Avg. error St. dev. Min. Error Max. error

(pixels) (mm) (mm) (mm) (mm)
F1 7.43 1.54 1.02 0.06 3.73
F2 7.71 1.61 0.68 0.46 2.76
F3 6.24 1.33 0.31 0.45 1.97
F4 5.42 1.16 0.58 0.24 2.78

Total 6.70 1.41 0.74 0.06 3.73

4.2 Intensity Transformation

Recall that unlike the HTTO, which was designed to display rich thermal tex-
tures, human skin has a much more homogeneous aspect on thermal images.
To address this, an intensity transformation was proposed (Equation 1), which
significantly increases the number of interest points detected in such images. To
illustrate the improvement resulting from this transformation, Figure 15 shows
some examples of interest point detection on thermal images of the human
subjects, without and with the transformation. For subjects S1−4, the intensity
transformation increased the number of interest points detected approximately
eight (from 54 to 434), ten (from 42 to 460), six (from 57 to 357), and nine (from
34 to 318) times, respectively.

The robustness of the proposed intensity transformation was assessed in
terms of number of correct matches under varying viewpoint angles. The ref-
erence image (i.e. viewpoint angle of 0o) corresponds to a frontal image of the
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(a) (b) (c) (d)

Figure 15: Effect of the proposed intensity transformation on interest point detection

in thermal images. The images are shown with a grayscale palette to facilitate inter-

pretation of the transformation. Top row: without transformation. Bottom row: with

transformation. From left to right: subjects S1, S2, S3, and S4.

face. Four sets of thermal images were acquired, with a delay of approximately
three minutes between each set, to account for temperature variation under a
time frame plausible for thermal image acquisition. There was a maximum vari-
ation of 3oC between the average temperature of the image sets. Figure 16 shows
the results of the experiment with and without the transformation. The trans-
formation clearly improves performance, very significantly. From the number
of matches under a small viewpoint angle (e.g. 5o), it is possible to notice that
the results from Figure 15 are indeed representative, since both indicate a per-
formance increase of approximately ten times.

As expected, with the intensity transformation, the number of correct matches
decreases rapidly with increasing viewpoint changes, which is reasonable, since
the most distinctive (i.e. more stable keypoints are detected) regions of the head
occur in the frontal view of the face. Without the transformation the decrease is
more subtle, since there are almost no matches.

4.3 Case Study with Human Subjects

In order to demonstrate the use of the proposed method in medical applica-
tions, experiments were made with two human subjects. The simple geometry
of the HTTO allowed evaluation on a per-surface basis. Additionally, the entire
surface texture was a thermal marker by design, so that 2D displacement error
between matching interest points could be used to estimate projection error.
None of these is true for human subjects – markers must be manually placed for
error measurement.

For each subject, markers that are both visually and thermally visible – fidu-
cial markers – were placed on their faces during 3D mesh and thermal image
acquisition, so that their displacement in the visible (i.e. mesh with visible light
texture) and thermal 3D models could be measured at these locations. Note that
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Figure 16: Number of correct matches under varying viewpoint angles. Error bars in-

dicate standard deviation. Four sets of thermal images (each contemplating viewpoint

angles in the 5o– 45o range) were considered, with a delay of approximately three min-

utes between the acquisition of each set. There was a maximum variation of approxi-

mately 3oC between the average temperature of the image sets.

the visible light texture is used only for evaluation, since the markers are not geo-
metrically distinctive – the proposed method itself has no need for it. Moreover,
the 3D thermography was restricted to the head, as it has representative appli-
cations such as in dentistry (e.g. temporomandibular disorders [40]) and facial
recognition [19, 41].

In each 3D model, nine markers were placed at the positions indicated in
Figure 17. The displacement error of the markers was measured as their Eu-
clidean distance, presented in Table 5.

Table 5: Displacement error for the fiducial markers in the visible light and thermal 3D
models.

Subject
Avg. error St. dev. Min. Error Max. error

(mm) (mm) (mm) (mm)
S1 3.69 1.45 1.94 5.81
S2 5.64 2.17 1.69 9.87
S3 4.57 1.79 2.19 7.45
S4 4.41 2.87 1.73 8.74

Total 4.58 2.12 1.69 9.87

The average error (i.e. 4.58 mm) is reasonable, especially considering that
the average head circumference of an adult male with average height (i.e. 1600
mm – 1800 mm) is approximately 600 mm [42], and that the markers themselves
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Figure 17: Fiducial marker positioning.

had a 3 mm diameter. The largest error (i.e. 9.87 mm) occurs in the marker on
the nose of subject S2. It might seem like a large error compared to the maximum
obtained with the HTTO, but considering that it accounts for three dimensions,
unlike with the HTTO, in which the error is two-dimensional (it was accounted
for each surface), it is reasonably small. Nevertheless, this error is not negligible
and suggests that the simple weighted average approach described in Section 3
might be improved – even though it is enough to show the efficacy of the pro-
posed method. Figure 18 shows, from different views, the 3D thermographs out-
put by the proposed method. Overall, the results clearly show that the method is
effective, despite the higher error compared to those observed in the evaluation
with the HTTO.

As discussed in the evaluation of the HTTO, there might be imperfections
related to areas of occlusion that occur during the acquisition of the thermal
images. This issue is noticeable, for instance, in the regions of the 3D thermal
model corresponding to the chin of subject S1 (Figure 19). Again, these areas of
occlusion are consequence of the circular motion of the thermal camera during
thermal image acquisition. Because this motion is done in a single plane around
the middle segment of the head, segments above and below are subject to occlu-
sion. This issue can be solved simply by acquiring images at additional angles,
i.e. varying h and γ in the swivel stand described in Figure 2.

5 Discussion

The analysis of displacement error showed that the proposed method is accu-
rate under the simplified conditions provided by the HTTO. In this manner, it
not only validates the general approach of the proposed method, but also pro-
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Figure 18: 3D thermal models obtained using the proposed method. From top to bot-
tom row: subjects S1, S2, S3, S4.

vides a baseline for comparison of the results obtained with human subjects.
Compared to using the HTTO, there are two main difficulties when employ-
ing the proposed approach on human subjects: poor contrast and significantly
more complex geometry. To handle poor contrast, an intensity transformation
was proposed, which was shown to increase very significantly the number of
interest points detected. An assessment of the number of correct matches un-
der varying viewpoint angles showed that the proposed transformation not only
achieves consistently superior performance with respect to the original thermal
images, but that it is robust under different measurements. Despite being more
challenging, the more complex geometry did not compromise the process, since
the local planarity of human faces were enough to detect an adequate number
of stable interest points.

With an adequate number of stable interest points, camera pose estimation
and 3D mesh alignment can be adequately employed for thermal image projec-
tion. The 3D thermal model resulting from this processing pipeline was shown
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Figure 19: Imperfections in the 3D thermal model due to areas of occlusion during
thermal image acquisition.

to be accurate through an assessment of displacement error of fiducial mark-
ers. Taking the low resolution of the thermal images (i.e. 320×240) and diameter
of the markers (i.e. 3 mm) into account, the errors are remarkably small. The
projection might present some local errors under occluded regions (e.g. subject
chin) of the thermal camera setup, but these can be mitigated by acquisitions of
thermal images from additional angles.

Our approach differs from most other works that focus on biomedical ap-
plications, in which the common approach to compute 3D thermal models is
to simultaneously acquire 3D geometry and 2D thermal data by affixing them
together [17, 18, 20, 43]. In this case, thermal image projection into a 3D model
is straightforward, since both imaging modalities are calibrated together. Some
authors have even employed this approach for augmented reality, using a real
projector to project thermal data over the physical object [44]. Our results show
that such restrictive acquisition conditions can be avoided by employing pose
estimation via Structure from Motion, as long as the thermal images are subject
to an adequate intensity transformation.

A framework similar to ours was proposed in the context of Nondestructive
Testing and Evaluation (NDT&E) applications by Akhloufi and Verney [45]. Their
framework employs a projection of thermal data over a 3D height map, which re-
lies on matching features over both imaging modalities. Since thermal data (and
in this case, even the height map) have very low-contrast, the authors employ
contrast stretching for dynamic range enhancement. In comparison, our work
presents the following advantages. First, our approach does not rely on mark-
ers for feature detection. Fiducial markers are employed only for assessment of
displacement error – the thermal image with intensity transformation is enough
for feature detection. Second, our intensity transformation is capable of gen-
erating much more contrast than simple contrast stretching, so that the SIFT
descriptor can be employed. This results in more robustness than the Hough
transform employed by Akhloufi and Verney [45], which must assume the shape
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of the content to be detected. Additionally, their assessment is qualitative, while
we provide a quantitative analysis in terms of amount and robustness of interest
points detected, as well as displacement error in the thermal projection over the
3D mesh.

6 Conclusions

This paper presented a 3D thermography method that does not require coupled
acquisition of 3D mesh and thermal images, unlike previous methods. Such de-
coupling allows more modular acquisition processes, which have advantages
such as legacy equipment and data reuse. The method is based on camera pose
estimation through Structure from Motion (SfM), which is widely employed for
visible light images, but not so on thermal images. The issue with thermal im-
ages, namely, the lack of texture for adequate interest point detection, was ad-
dressed with an intensity transformation that increased the number of detec-
tions up to ten-fold in experiments with human subjects. For the validation of
the proposed method, the design and implementation of the HTTO (Heat Tex-
ture Test Object) was presented. The HTTO can be easily reproduced with com-
mon printed circuit board manufacturing processes and can be used to evalu-
ate other methods of 3D mesh and thermal image fusion. An evaluation of the
proposed method on the HTTO showed that it is very accurate, resulting in an
average displacement error of 1.41 mm (s = 0.74 mm). Additionally, the method
was evaluated with human subjects in order to demonstrate its applicability un-
der medical application conditions, resulting in an average displacement error
of 4.58 mm (s = 2.12 mm), showing that the proposed method is also accurate
with human subjects. Future work includes precise procedures to eliminate oc-
clusion areas, improvement in the way the thermal projections are used (i.e.
weighted average) to decrease displacement error, and evaluating the method
with other interest point detectors and descriptors.
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