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ABSTRACT

LIE, Maiko Min Ian. An Efficient Strategy for Estimation of Visually Salient Regions

in Images. 2018. 69 f. Master’s Thesis, Graduate Program in Electrical and Computer

Engineering, Federal University of Technology – Paraná. Curitiba, 2018.

The information incident on the human visual system is bound by a selection mecha-

nism, known as visual attention. This mechanism is responsible for restricting incoming

visual information to a smaller and potentially important subset for further processing,

enabling the visual system to respond rapidly, despite the enormous amount of infor-

mation to which it is subject. Computer vision systems often employ reproductions

of this mechanism in order to reduce visual search space, since this strategy can lead

to substantial improvement in efficiency. This thesis addresses the problem of effi-

cient computation of visual attention, particularly the case of salient region detection.

A strategy based on joint upsampling of coarse-scale saliency estimates is presented

for that purpose. This approach allows leveraging both the advantages of coarse-

scale estimation (reduction of computational cost, abstraction of unnecessary details)

and fine-scale edge information (high accuracy). Based on the highly redundant data

and spatially-varying importance of content in images of real-world scenes, two visual

saliency formulations are presented for coarse-scale estimation in the proposed strat-

egy. The first approach operates on a pixel level, based on random color distances.

The second approach operates on a patch level, based on the reconstruction error com-

puted from the Principal Component Analysis of the image boundaries. The efficacy

and efficiency of the proposed strategy are demonstrated through assessment on the

ASD, MSRA10K, ECSSD, and DUT-OMRON datasets. Comparison with other seven

state-of-the-art methods in terms of precision, recall, F-measure, and execution time

demonstrate that the proposed strategy is highly competitive, achieving one of the

best trade-offs between accuracy and execution time.

Keywords: Visual attention, saliency detection, computer vision.



RESUMO

LIE, Maiko Min Ian. Uma Estratégia Eficiente para Estimação de Regiões Visualmente

Salientes em Imagens. 2018. 69 f. Dissertação, Programa de Pós-graduação em Engen-

haria Elétrica e Informática Industrial (CPGEI), Universidade Tecnológica Federal do

Paraná. Curitiba, 2018.

A informação incidente no sistema visual humano é limitada por um mecanismo de

seleção, conhecido como atenção visual. Este mecanismo é responsável por restringir

a informação visual incidente a um subconjunto menor e potencialmente importante

para processamento adicional, permitindo que o sistema visual responda rapidamente

apesar da enorme quantidade de informação ao qual normalmente está sujeito. Siste-

mas de visão computacional empregam reproduções deste mecanismo para redução de

espaço visual, visto que essa estratégia pode levar a substanciais ganhos em eficiência.

Esta dissertação trata do problema de computação eficiente de atenção visual, em par-

ticular o caso de detecção de regiões salientes. Uma estratégia com base em sobreamos-

tragem conjunta (joint upsampling), de estimativas de saliência em baixa resolução é

apresentada com esse propósito. Isso permite explorar tanto as vantagens de estima-

tiva em baixa-resolução (redução de custo computacional, abstração de detalhes

desnecessários) quanto as de bordas em alta-resolução (alta acurácia). Com base na

alta redundância de dados e importância espacialmente-variável no conteúdo de im-

agens de cenas reais, duas formulações de saliência visual são apresentadas para esti-

mativa em baixa resolução na estratégia proposta. A primeira opera em nível de pixel,

baseada em distâncias de cor aleatórias. A segunda opera em nível de patch, baseada

em erro de reconstrução por bases obtidas através de Análise de Componentes Princi-

pais nas margens da imagem. A eficácia e eficiência da estratégia proposta são demon-

stradas através de avaliação nos bancos de imagens ASD, MSRA10K, ECSSD, e DUT-

OMRON. Uma comparação com outros sete métodos do estado-da-arte em termos de

precisão, abrangência, F-measure e tempo de execução demonstra que a estratégia pro-

posta é altamente competitiva, alcançando uma das maiores relações custo-benefício

entre acurácia e tempo de execução.

Palavras-chave: Atenção visual, detecção de saliência, visão computacional.
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1 INTRODUCTION

The human visual system is subject to a massive amount of input data, such that it is

unfeasible to entirely process it in detail. It has been argued that, if unbounded, the

problem of visual search, and perhaps visual perception in general, is computationally

intractable (TSOTSOS, 1990). Yet, most people are capable of efficiently performing a

wide range of visual tasks even in visually complex environments. The key for this

efficiency is that, in fact, human vision is bounded by an information reduction mecha-

nism. This mechanism, known as visual attention, prevents the overload of the human

visual system by allocating its processing resources only to potentially important parts

of its input. In other words, it performs a visual search space reduction. This thesis

addresses the problem of efficient computation of visual attention.

1.1 BACKGROUND

While several experimental studies have investigated the operation of human visual

attention, a fundamental contribution, and perhaps the most influential, is the Fea-

ture Integration Theory by Treisman and Gelade (1980). It hypothesized that elementary

properties of the scene are registered early, automatically and in parallel across the

visual field, and that their conspicuity is subsequently used to select regions for allo-

cation of attention. This theory heavily influenced the neurally plausible architecture

proposed by Koch and Ullman (1985), which laid out an approach for saliency-based

visual attention whose aspects are adopted to this day. Despite the significant impor-

tance of this architecture, it was not its conceptual model, but arguably its later com-

putational implementation by Itti, Koch and Niebur (1998) that popularized the adop-

tion of visual attention in technical applications, and established it as a major research

theme in computer vision. Their work demonstrated not only that a neurally plausi-

ble feature integration approach is computationally practical, but that it can effectively

predict human performance on visual search tasks with images of real-world scenes.

An often overlooked aspect from these early studies is of particular importance

to the current popularity of visual attention models in computer vision. This aspect is

the very fortunate choice by Koch and Ullman (1985) of formalizing the encoding of

early-feature conspicuity as a saliency map, although its notions were already present in
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(a) (b) (c) (d)

Figure 1: Computation of bottom-up visual attention (i.e., saliency map). (a) Input image. (b)
Ground truth (i.e., human labeling). (c)–(d) Saliency maps using the pixel-level and patch-level
approaches proposed in this thesis, respectively. A saliency map highlights visually distinctive
regions of the scene, which are likely to attract visual attention in the absence of explicit tasks.

the earlier master map proposed by Treisman and Gelade (1980). Computationally, the

saliency map is simply a grayscale image with the intensity at each location describing

its corresponding conspicuity (Figure 1). This allows straightforward inclusion into vi-

sion applications and easy assessment. It is also versatile in the sense that it is general

enough to encode both bottom-up (i.e., purely stimulus-based) and top-down (i.e., se-

mantic) aspects of attention (BRAUN; KOCH; DAVIS, 2001). More importantly, despite

the origins of the concept, a saliency map does not impose any particular visual atten-

tion architecture. The implication is that, at least technically, any strategy for feature

conspicuity estimation may be employed for bottom-up visual attention, as long as it

outputs a useful saliency map. In fact, the terms bottom-up visual attention and saliency

detection are often used interchangeably, the latter being arguably more common.

1.2 MOTIVATION AND SCOPE

Given the large number of approaches for feature conspicuity computation, each one

leading to significantly different saliency maps, bottom-up visual attention models ac-

count for a substantial part of current visual attention research. An extensive bench-

mark by Borji et al. (2015) assessed more than 30 saliency detection models only in

the period between 1998 and 2014. These models span a wide range of formulations,

including graph-theoretical (JIANG et al., 2013a), frequency-domain (HOU; ZHANG,

2007), probabilistic (ALPERT et al., 2012), among many others. Most of them differ ba-

sically in aspects such as feature set (e.g., color, intensity, orientation), locality (e.g., lo-
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Time limit for bottom-up visual attention
by the human visual system (~150 ms)

Figure 2: Average execution time of state-of-the-art saliency detection methods for an RGB im-
age with 400×300 pixels, according to the benchmark by Borji et al. (2015). Top: 38 methods
published from 1998–2014. Bottom: selection of algorithms with execution time under one sec-
ond. The approximate time limit for bottom-up visual attention by the human visual system,
150 ms according to Theeuwes (2010), is indicated in red. Only 11 of the 38 methods perform
within this time frame. The execution times reported are for a Xeon E5645 2.4 GHz CPU desk-
top with 8 GB RAM.

cal, global), scale (e.g., coarse, fine, multiple), granularity (e.g., pixel, patch, segments)

and learning (e.g., unsupervised, supervised, reinforced).

While the increased interest in visual attention modeling is encouraging, a

problem with many models being currently proposed is that, as they get increasingly

sophisticated to achieve higher accuracy, in general, their computational performance

decreases accordingly. In many cases, this severely limits their applicability, since

saliency detection is usually not the task itself, but a pre-processing step prior to more

elaborate processing. It is also worth noting that the original motivation for saliency

detection is its effectiveness on the human visual system, in which it has been reported

to take less than 150 ms (THEEUWES, 2010). For perspective, Figure 2 shows the av-
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erage execution time of 38 saliency detection algorithms assessed by Borji et al. (2015),

computed for an RGB image with 400×300 pixels. Only 20 of the 38 methods execute

under a second, showing that around half of them are unlikely to perform in real-time,

possibly delaying instead of accelerating further processing stages. Moreover, only 11

of those methods execute under the time frame estimated for bottom-up visual atten-

tion by the human visual system, several of them at the cost of drastic simplifications

that severely limit their accuracy, some of which are discussed in this thesis. Of course,

this is just a rough comparison since there is no hard threshold on the execution time

required for a method to be useful. Still, this offers some perspective on the relevance

of more efficient saliency detection models, which is the main subject of this work.

Regarding scope, this thesis is restricted to salient region detection with intrin-

sic cues (BORJI; ITTI, 2013) in the the unsupervised setting. In other words, only visual

cues from the image itself (e.g., color) are used for saliency modeling, as opposed to ex-

trinsic cues, such as additional saliency maps (i.e., co-saliency detection setting (ZHANG

et al., 2018)) or manually labeled data (i.e., supervised setting). In this sense, while there

are more accurate methods in the literature (e.g., Jiang et al. (2013b), Kim et al. (2014),

Kim et al. (2016), Wang et al. (2017)), including those employing recently popular deep

neural network models (e.g., Li et al. (2017a), Li et al. (2017b), Hou et al. (2017)), they

are mostly supervised and out of the scope of this thesis.
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1.3 THESIS STATEMENT

This work addresses the problem of efficient saliency detection. For this purpose, a

completely bottom-up approach is proposed, which is unsupervised and makes mini-

mal assumptions about the input image. In order to achieve short execution time with-

out significantly sacrificing accuracy, a principled strategy is adopted, which lever-

ages the properties of data redundancy and spatially-varying perceptual importance

in images of real-world scenes by means of joint upsampling of coarse-scale saliency

estimates. Thus, the central thesis of this work is as follows:

Most images of real-world scenes present highly redundant data and spatially-

varying perceptual importance. This can be leveraged to design efficient and effec-

tive algorithms for estimation of visually salient regions in images. Redundancy

can be exploited for efficiency by modeling saliency in terms of a subset of the im-

age, while spatially-varying importance can be exploited for efficacy by biasing from

where this subset is selected.

The effectiveness and efficiency of the proposed approach are demonstrated by quan-

titative assessment on the ASD, MSRA10K, ECSSD, and DUT-OMRON datasets, in

terms of precision, recall, F-measure, and execution time. Comparison with state-

of-the-art approaches demonstrate that the proposed approach is highly competitive,

achieving one of the best trade-offs between accuracy and execution time.

1.4 CONTRIBUTIONS

The main contributions of the work presented in this thesis are:

• An efficient salient region detection model. The proposed model is capable

of computing accurate salient regions by joint upsampling coarse-scale saliency

estimates. This approach outputs accurate region silhouettes without relying on

pre-segmentation, leading to a significant lower computational burden than most

methods in the literature. Besides avoiding pre-segmentation, the key to the effi-

ciency of this approach is that it operates mostly at coarse-scale, restricting com-

putation of high-resolution data to only when it is absolutely required, i.e., when

assigning saliency to regions.
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• A pixel-level saliency estimation function. The visual saliency of a pixel is mod-

eled as its color distance to a randomized color summary of the image. This ap-

proach is computationally efficient, presenting linear complexity, and can lead to

more accurate saliency maps than previous similar approaches (i.e., pixel-level

based on a color summary or random sampling) when employed within the pro-

posed joint upsampling model. Moreover, this estimation approach can be triv-

ially extended with location-based cues, such as a boundary prior.

• A patch-level saliency estimation function. The visual saliency of a patch is

modeled as the residual of its reconstruction from a PCA (Principal Component

Analysis) basis extracted from patches at the image boundaries. In contrast to

previous work on PCA reconstruction for saliency detection, this estimate is em-

ployed within the joint upsampling model, such that additional processing stages

previously employed are unnecessary. This leads to a modest decrease in accu-

racy compared to previous work, but a massive increase in performance.
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2 BACKGROUND

This chapter introduces the main subject of this work, namely visual attention and its

computational modeling (Section 2.1). Additionally, an overview of low-dimensional

image representation is presented (Section 2.2) to substantiate one of the main assump-

tions in the strategy proposed in this thesis, that saliency detection can be efficiently

and accurately computed from a small subset of pixels from the original image. The

chapter closes with a description of two techniques used in the implementation of the

proposed strategy, Joint Upsampling (Section 2.3), and Principal Component Analysis

(Section 2.4).

2.1 VISUAL ATTENTION

2.1.1 Theoretical background

While historical accounts (ITTI; REES; TSOTSOS, 2005) trace the concept of visual at-

tention back to as far as Descartes (1649), a more relevant and illustrative starting point

is the experimental work by Yarbus (1967). In his experiment, subjects were presented

with a painting — An Unexpected Visitor by Repin (1884), shown in Figure 3. Mean-

while, an eye-tracking device recorded their eye movements, allowing posterior in-

spection of viewing patterns across the scene. Under the described experimental setup,

Figure 3: An Unexpected Visitor, painting by Repin (1884). This painting was used as visual
input in the eye movement experiments by Yarbus (1967).
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(a) (b) (c)

(f)(e)(d)

Figure 4: Eye movement experiment by Yarbus (1967). Each figure corresponds to eye
movements recorded from subjects instructed to perform the following tasks: (a) estimate the
material circumstances of the family, (b) estimate the age of the people, (c) estimate what the
family was doing before the arrival of the “unexpected visitor”, (d) remember the clothing
worn by the people, (e) remember the position of the people and objects in the room, (f)
estimate how long the “unexpected visitor” had been away from the family. Each record
corresponds to three minutes. The eye movement records were manually superimposed for
illustration purposes and might not be perfectly accurate.

the subjects were instructed to perform several cognitive tasks, such as estimating the

material circumstances of the family, estimating the age of the people, and remember-

ing the position of the people and objects in the room. The eye movement recordings

revealed strikingly distinctly eye movement patterns for each task. These patterns are

shown in Figure 4 (a–f) for the six different tasks of the experiment. The results indicate

that the visual field is not sampled passively or arbitrarily — eye gaze is actively allocated

to potentially useful information. This allocation of cognitive processing resources to a

small portion of visual stimuli has been attributed to the mechanism of visual attention.

Visual attention has been intensively investigated — its aspects have been at-

tributed to specific brain regions (FINK et al., 1996; ITTI; KOCH, 2001), and several

psychological theories have been proposed to model its operation (for a computation-
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ally oriented review, see Tsotsos (2011)). This mechanism performs information reduc-

tion, and is believed to be largely responsible for preventing an overload of cognitive

processing in the brain. Two types of selection comprise the operation of visual atten-

tion. The first is reflexive and stimulus-driven, or bottom-up, the second is voluntary

and task-driven, or top-down — there are indications that both interact in a non-trivial

manner (CONNOR; EGETH; YANTIS, 2004). At this point, it is important to clarify the

difference between eye gaze, visual attention and visual saliency. Eye gaze is a coordinated

motion of the eyes and head, and is largely guided by process of visual attention (BORJI;

ITTI, 2013). This process, in turn, is comprised of top-down and bottom-up factors, the

latter of which is believed to be driven by distinctiveness of low-level visual features,

that is, visual saliency (NOTHDURFT, 2000; THEEUWES, 2010).

Similarly to the human visual system, computer vision systems possess limited

processing capacity, leading to a substantial interest in the computational modeling of

visual attention. Despite some moderate success (e.g., Oliva et al. (2003)), modeling

top-down attention has proved elusive for practical computer vision systems (ITTI;

KOCH, 2001). This is a consequence of its dependence on prior knowledge and expec-

tations, which are not always available, often not transferable between different tasks,

and lead to more complex mental processes (FRINTROP, 2006). Bottom-up attention,

on the other hand, lends itself to simple modeling and is generally applicable, since

it is based exclusively on low-level scene features. For this reason it is arguably one

of the major subjects in current computational visual attention research. This thesis is

concerned exclusively with bottom-up visual attention.

2.1.2 Computational modeling

Bottom-up visual attention is computed from visual saliency. In other words, a scene

location is more likely to attract involuntary attention if it distinguishes itself from

its surroundings in terms of attributes such as orientation, intensity, and color. This

approach was popularized by Itti, Koch and Niebur (1998), which implemented and

demonstrated the efficacy of the biologically-plausible model by Koch and Ullman

(1985). Their implementation selects candidate regions to attend based on center-

surround saliency in multiple scales, and demonstrated remarkable predictive power

with respect to human eye movements for images of real-world scenes. Due to this suc-
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Figure 5: Comparison of different types of saliency maps. Left: Input image. Middle: Fixation
prediction. Right: Salient region detection. Fixation prediction highlights locations that are
more likely to attract eye gaze, and results in a blurry clusters of points. Salient region detec-
tion, on the other hand, entirely highlights regions that are more likely to attract eye gaze. The
images are from the Imgsal dataset (LI et al., 2013a).

cess, saliency detection has been widely adopted in computer vision applications, such

as image compression (OUERHANI et al., 2001), video quality assessment (ĆULIBRK

et al., 2011) and content-based image retrieval (MARQUES et al., 2006), among several

others (NGUYEN; ZHAO; YAN, 2018).

It is important to distinguish between the two main types of saliency detection,

since they output saliency maps with significantly different aspects, and consequently

lead to different algorithm design choices. The first type is fixation prediction, which is

concerned with computing saliency maps with higher intensity in image locations that

human viewers are more likely to fixate at. Since fixations occur at relatively precise

locations, saliency maps for fixation prediction highlight sparse clusters, which are

usually blurred since it was shown that this improves prediction accuracy in most

cases (HOU; HAREL; KOCH, 2012). The second type is salient region detection, which

is concerned with computing saliency maps that highlight salient objects or regions

in the scene entirely. In contrast to the blurry clusters of points in fixation prediction,

this type of saliency map highlights entire regions, which are usually computed from

segmentation algorithms. Figure 5 presents an example of each type of saliency map

for comparison. Since salient region detection is more predominant in computer vision

applications, it is the type of saliency map with which this thesis is concerned.

Most salient region detectors are roughly based on two stages (PERAZZI et al.,

2012): image abstraction and saliency assignment. The former decomposes the image

into perceptually homogeneous regions, to reduce the number of visual elements and

discard unnecessary details, while the latter assigns a saliency value to each region,

often based on its visual feature uniqueness. While there are methods that do not per-



25

form image abstraction and assign saliency at a pixel level (e.g., Achanta et al. (2009)),

this approach has lost favor, since it does not scale as well as region-based methods

(CHENG et al., 2015). There are, however, methods that employ pixel-level estimation

in combination with region-level estimation (e.g., Li et al. (2013b)).

2.2 LOW-DIMENSIONAL IMAGE REPRESENTATION

One might be tempted to assume that more visual data leads to more accurate image

analysis. This is not necessarily true. When it comes to visual perception, typical scenes

present highly redundant data and spatially-varying importance — both aspects can enable

substantial reduction in visual data dimensionality. Redundancy implies that a part of

the information can be ignored without impact on the accuracy of visual tasks. Varying

importance implies that, from the information that does affect accuracy, a subset can be

chosen such that ignoring it decreases accuracy the least. These characteristics can be

leveraged to reduce the dimensionality of image content, and consequently improve

the efficiency of computer vision processes.

2.2.1 Redundancy in natural images

The role of redundancy on visual perception has been discussed at least since Attneave

(1954), and demonstrated for natural images in an experiment by Kersten (1987), in

which the redundancy of missing pixels was estimated based on the ability of human

subjects to predict each of their values. Redundancy is not restricted to pixel-level —

Zontak and Irani (2011) analyzed the redundancy of patches in single natural images,

and showed that patches tend to reoccur in close proximity of each other, with proba-

bility decaying rapidly with distance from the patch. In fact, redundancy also occurs in

scale, as demonstrated in the example-based image super-resolution method by Glas-

ner, Bagon and Irani (2009), which dispenses with external datasets, relying only on

patches extracted from the same image at several scales. The redundancy of natural

images over scale is such that, combined with the tolerance that the human visual sys-

tem presents to degradations in image resolution, it has been reported that humans

need only 32×32 pixels to achieve an 80% recognition rate on scene recognition tasks

(TORRALBA; FERGUS; FREEMAN, 2008). Figure 6 (a) shows an example of patch

redundancy in space and scale.
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(a) (b) (c)

Figure 6: Examples of redundancy and spatially-varying importance in images. (a) Patch recur-
rence on space and scale. (b) Keypoints using the SIFT method. The circle indicates the scale at
which the keypoint was detected and the line is its dominant gradient orientation. (c) Average
saliency map of 25 images randomly sampled from the MSRA10K dataset (CHENG et al., 2015)
— there is a clear bias towards the center. The ground truths of the dataset were used as saliency
maps and were resized to the same size prior to averaging.

2.2.2 Spatially-varying importance of image content

The spatially-varying importance of image content was discussed by Brady (1987) from

the perspective of constraints to visual processes. In this interpretation, corners and

other curvature maxima were called “seeds of perception”, i.e., locations that provide

more reliable parameterization of visual processes by imposing tighter constraints.

This concept is arguably the origin of what are currently known as “interest points”

or “keypoints” (SCHMID; MOHR; BAUCKHAGE, 2000), although current methods are

more sophisticated than simple corner detectors, and are designed to detect points or

blobs that present robustness to photometric and geometric transformations (TUYTE-

LAARS; MIKOLAJCZYK, 2008). Keypoint-based image representation is used, for in-

stance, in the bag-of-visual-words approach for image classification (CSURKA et al.,

2004), which encodes images as sets of patches extracted from keypoints. Despite be-

ing very influential, this approach was subject to a later study by Nowak, Jurie and

Triggs (2006), which showed that random sampling is more effective than keypoint

detection for this particular application. Figure 6 (b) shows an example of keypoint

detection using the SIFT (Scale Invariant Feature Transform) method (LOWE, 2004).
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In the context of visual attention, while keypoint detection has been employed

for fixation prediction (e.g., Oliveira, Rocha Neto and Gomes (2016)), general location

cues are more common, the most notable being center prior, i.e., the center of the image

is more likely to be salient, and boundary prior, i.e., the image boundaries are more

likely to be background. While these two may seem equivalent, boundary prior is

more general, since salient objects can appear off the center, for instance due to the one-

third composition principle from photography, and still not overlap with the boundary

(WEI et al., 2012). Figure 6 (c) shows the average saliency map of 25 images (mostly

photographs) sampled randomly from the MSRA10K dataset (CHENG et al., 2015),

demonstrating center-bias. It is worth noting that center-bias is not a property of visual

content itself, but a consequence of the framing imposed during image acquisition, for

instance, by the photographer.

2.3 JOINT UPSAMPLING

The Gaussian low-pass filter computes a weighted average of the values inside its sup-

port, such that the weights decay with distance from its center. It is one of the most

commonly employed spatial filters in image processing. The visual effect of Gaussian

filtering is ”smoothing“, for this reason it is also employed in computational photogra-

phy for removal of small details (e.g., for abstraction and denoising). Decomposing an

image into successively less detailed layers by this approach is known as a Gaussian

pyramid decomposition (ADELSON et al., 1984), which is perhaps the most common

multi-scale representation technique in the literature.

For some applications, blurring is required to reduce the amount of small de-

tails in the image, but edges need to be preserved to avoid distorting shape informa-

tion. In these cases, traditional Gaussian filtering is not enough — since the filter oper-

ates only in space, it cannot account for edges. A solution is to filter in both space and

range, in other words, compute based not only on geometric closeness but also on photo-

metric similarity between the pixels (TOMASI; MANDUCHI, 1998). In this manner, the

output of the filter is attenuated not only with distance from the center of the support

but also in the vicinity of edges. Filters that operate with this approach are known

as edge-preserving smoothing (EPS) filters. Figure 7 presents an example comparing the

operation of traditional and edge-preserving smoothing.
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Figure 7: Comparison of smoothing filters. Left: Input image. Middle: Traditional Gaussian
smoothing. Right: Edge-preserving smoothing. The regions enclosed by blue rectangles are
displayed zoomed-in for more detailed comparison. The original image presents details such
as the texture of the fabric and the pattern on the background. Gaussian filtering is capable of
removing most of the details, but blurs the edges in the process. Edge-preserving smoothing is
capable of removing a similar amount of detail while retaining sharp edges.

In this work, edge-preserving smoothing is performed using the Fast Global

Smoother (FGS) proposed by Min et al. (2014), motivated by its computational per-

formance and relatively easy parameterization. The FGS formulates edge-preserving

smoothing as a solution to the following 1D minimization problem for each row and

column in the image:

J(u) = ∑
n

(
(un − fn)

2 + λ ∑
i∈N (n)

wn,i (g)(un − ui)
2
)

, (1)

where f , g and u correspond to rows or columns of the input, guide and output images,

respectively. While the f provides the data to be smoothed, g defines the edges within

this content is to be smoothed. Equation 1 is defined for n ∈ [1..L], where L is the

width of f when solving for rows, and the height of f for columns. N is the pair of
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neighbor pixels of n, λ is a parameter defining the smoothness of the output, and wn,i(g)

is a function that defines the similarity of the pixels n and i in the image g:

wn,i (g) = exp
(
−||gn − gi||

σc

)
, (2)

where σc is the range parameter. The parameters values were set empirically as σc = 0.03

and λ = 100.

Filtering in both space and range provides an interesting possibility: smooth-

ing content from one image within edges from another image (i.e., f 6= g in Equation 1).

The main appeal of this approach is that the content to be smoothed can be computed

at a low resolution, while the edges may come from a full-resolution image. Prior to fil-

tering, the low-resolution content in f must be resized to match the full-resolution size

of g, which can be efficiently done through nearest-neighbor interpolation. This pro-

vides a computationally efficient approach for achieving full-resolution output despite

restricting more costly processing operations to low resolution. This approach is called

joint upsampling, and its effectiveness was demonstrated for tasks such as colorization,

tone-mapping, and depth from stereo (KOPF et al., 2007).

Joint upsampling is a central component of the strategy proposed in this the-

sis, and is employed to efficiently achieve accurate, near full-resolution, saliency maps

from coarse-scale estimates. As will be shown later, employing joint upsampling al-

lows leveraging full-resolution edge information to achieve high accuracy in a more

computationally efficient manner than the segmentation-based approach of most state-

of-the-art methods, while leading to comparable and very competitive results.

2.4 PRINCIPAL COMPONENT ANALYSIS

Principal Component Analysis (PCA) is a statistical procedure commonly used for di-

mensionality reduction and exploratory data analysis (ABDI; WILLIAMS, 2010). It

projects the data onto a basis (i.e., principal components) in which the variance is max-

imized. Let a matrix M describe a dataset, such that each row represents a data instance

and each column describes a coordinate in feature space (i.e., data attribute, variable).

The PCA of M can be performed by eigendecomposition of its covariance matrix. More
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precisely, the covariance matrix of M is computed as:

C = MMT, (3)

and then subject to eigendecomposition:

CU = UΛ, (4)

where U is a matrix containing the eigenvectors in its columns, and Λ is a diagonal ma-

trix containing the eigenvalues associated with the eigenvectors in U. In the context of

PCA, the columns of U are the principal components and the elements in the diagonal of

Λ are their corresponding variances. The latter is often used to choose which principal

components to retain, e.g., retain the first few that account for 95% of the total variance.

Besides dimensionality reduction, PCA can also be directly employed for pat-

tern recognition. For instance, a principal component model can be computed for

each class, such that data instances are classified according to how well they fit each

class (WOLD, 1976). This approach has been effectively employed in applications

such as face recognition (TURK; PENTLAND, 1991), novelty detection (VIEIRA NETO;

NEHMZOW, 2007), object detection (MALAGÓN-BORJA; FUENTES, 2009; RAZA-

KARIVONY; JURIE, 2013), and pedestrian detection (CARVALHO et al., 2011). In this

thesis, similarly to previous work (MARGOLIN; TAL; ZELNIK-MANOR, 2013; LI et

al., 2013b), PCA is used to estimate the visual saliency of image regions in a simple and

computationally versatile manner, albeit more efficiently.
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3 RELATED WORK

This chapter reviews some of the most relevant work related to the contributions of

this thesis. Section 3.1 introduces the idea of estimating the visual saliency of a pixel

as its color dissimilarity to the rest of the scene, and the efforts made to improve the

efficiency of this approach. While effective on relatively simple scenes, pixel-level es-

timation presents some known limitations regarding scalability. Considering this, an

overview of region-level saliency estimation methods is also presented, with emphasis

on subspace-based methods, which is the region-level approach explored in this thesis.

Section 3.2 summarizes the theoretical motivation for coarse-scale saliency estimation,

including empirical results on human subjects, and how these have been employed in

computational visual attention models.

3.1 VISUAL SALIENCY MODELING

3.1.1 Pixel-level estimation

When discussing visual saliency in digital images, it is reasonable to start with the

model of saliency for a single pixel. Since perception of color difference is closely re-

lated to saliency, it has often been the central aspect in most saliency detection models,

for instance, Zhai and Shah (2006) defined the saliency of a pixel p in terms of color

distances as:

s(p) = ∑
pi ∈Ω

‖ f (p)− f (pi)‖, (5)

where f is the input image and Ω is the set of all image locations. In other words,

saliency is defined as the accumulated color distance with respect to the entire image. This

distance is often computed in the CIELAB color space, due to its perceptual uniformity,

i.e. in this space the Euclidean distance is approximately linear with respect to human

visual perception (REINHARD et al., 2008). While reasonable and straightforward, this

is approach is computationally inefficient — its computational complexity is O(n2) for

an image with n pixels. If there are more pixels than colors in an image, performance

can be improved by computing the saliency of each color instead of each pixel, since
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assigning precomputed saliency to each pixel can then be done with linear complexity.

However, this is often not the case. For instance, even a 1920×1080 true-color image

has approximately 2 million pixels, but more than 16 million possible colors. On the

other hand, limiting this approach to luminance can lead to very fast computation,

since it can be encoded in a single channel, spanning 256 values at most — which is

much smaller than the number of pixels in most images.

Despite being efficient, restricting the model to luminance information com-

promises effectiveness in a non-negligible manner, encouraging alternative strategies

to alleviate computational burden without sacrificing color information. For instance,

Achanta et al. (2009) proposed adopting a color summary — in their approach saliency

is defined as the color distance to the average color of the image. Since a single color differ-

ence is computed for each pixel, this approach executes in O(n). However, despite per-

forming well in simple datasets, the correlation between saliency and distance to the

average color of the image does not scale to more complex datasets (YILDIRIM, 2015).

Cheng et al. (2015) proposed returning to the strategy by Zhai and Shah (2006), but re-

ducing the number of colors (12 colors per channel) using histogram-based quantiza-

tion and ignoring rare colors. This enabled retaining color information while achieving

computation time comparable to using only luminance information, but with a sub-

stantial increase in accuracy. For an image with n pixels and k colors, this approach

executes in O(k2) + O(n) ≈ O(n), assuming n > k.

Another relevant approach is the random sampling strategy by Vikram, Tsche-

repanow and Wrede (2012) that, motivated by the random scattering of receptive fields

in the human visual system, estimates the saliency of a pixel as its color distance to the

average color of the randomly generated windows (i.e., in terms of location and size)

that contain it. It can be argued that this approach is a local variant of the approach by

Achanta et al. (2009), despite presenting a significantly longer execution time, mainly

due to the number of windows randomly generated (0.2·n for an image with n pixels)

and post-processing based on mean filtering. In this thesis, it will be shown that a

simpler randomized color summary can be employed under the proposed strategy,

resulting in superior trade-off between accuracy and execution time.
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3.1.2 Region-level estimation

Saliency is not exclusively estimated at a pixel-level. In fact, recent models are mostly

based on region-level estimation, with regions computed from segmentation algo-

rithms such as Mean shift (COMANICIU; MEER, 2002) and SLIC (Simple Linear Iterative

Clustering) superpixels (ACHANTA et al., 2012). There are, however, methods that do

not employ segmentation, and simply adopt regular patches as regions (e.g., Parikh,

Zitnick and Chen (2008), Borji and Itti (2012)), which is much more efficient, despite not

being as accurate. Computing saliency from regions instead of individual pixels allows

extraction of more informative features, as well as efficiency improvement, since there

are significantly less regions than pixels in an image (BORJI et al., 2014).

While there are many frameworks in which to model region-level saliency,

usually graph-based (e.g., Gopalakrishnan, Hu and Rajan (2009), Yang et al. (2013),

Jiang et al. (2013a)), here emphasis is given to subspace-based methods, particularly

those using Principal Component Analysis (PCA), which has been shown to be a pop-

ular and efficient approach to reveal the internal structure of data (MARGOLIN; TAL;

ZELNIK-MANOR, 2013). Several studies have investigated the idea of projecting vi-

sual data onto a latent subspace prior to visual saliency estimation. Rajashekar, Cor-

mack and Bovik (2003) computed the PCA of patches around fixations from eye-track-

ing data, comprised of viewing patterns from six human subjects on approximately

100 images, containing both natural and man-made scenes. The principal components

of these patches were employed as low-level features for saliency computation — con-

volving images with as few as four principal components as filter kernels resulted in

promising saliency maps for fixation prediction. Borji and Itti (2012) computed patch

saliency as a combination of local and global dissimilarity, in which the input patches

were first projected onto a dictionary learned from 1500 images of natural scenes.

Some approaches do not rely on external images. For instance, the method by

Duan et al. (2011) projects the patches from the input image onto a basis computed

from the input image itself. In this approach, patches are considered as vectors for

dissimilarity computation, and PCA is employed simply as a dimensionality reduction

and denoising mechanism. In contrast to this approach, Margolin, Tal and Zelnik-

Manor (2013) proposed a strategy that resembles that by Achanta et al. (2009) (i.e.,

saliency as dissimilarity to a visual feature summary of the image), but for patches on
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the PCA subspace. Based on the observation that salient patches appear scattered in

the subspace spanned by the principal components, the saliency of a patch is estimated

as its dissimilarity to the average patch of the image in this subspace.

Another interesting strategy comes from a classification perspective (MALA-

GÓN-BORJA; FUENTES, 2009), in which a PCA subspace is computed for each class.

Classification of new instances is done by projection into each subspace and assign-

ment to the one that results in the smallest reconstruction error. This approach was

explored in the saliency detection method by Li et al. (2013b), which assumes that im-

age segments belong to one of two classes: background or salient region. In this man-

ner, the saliency of a segment is estimated as its dissimilarity to segments in the image

boundaries, which is computed as the reconstruction error from a basis extracted from

boundary segments. However, this approach computes segments from SLIC superpix-

els (ACHANTA et al., 2012), which combined with this dissimilarity formulation leads

to heterogeneous saliency maps on certain types of images. To address this issue, the

authors combined several post-processing stages, including estimation of sparse recon-

struction error, a propagation mechanism based on K-means, and multi-scale combina-

tion (LI et al., 2013b). As the thesis results will show, under the proposed joint upsam-

pling strategy, PCA reconstruction error of simple regular patches can be employed for

accurate region-level saliency detection without need for pre-segmentation or costly

post-processing steps, resulting in high accuracy with very short execution time.

3.2 COARSE-SCALE SALIENCY ESTIMATION

Estimating saliency in coarse scale (i.e., low-resolution) is advantageous from mainly

two perspectives. First, there is a substantial decrease in processing data, which leads

to a very significant reduction in execution time. Second, there is evidence that at-

tention is much more coarse-grained than visual resolution, suggesting that coarse-

scale analysis might also be the more theoretically adequate (INTRILIGATOR; CA-

VANAGH, 2001). Regarding this perspective, Judd (2011) presented extensive exper-

iments quantifying the extent to which human fixations are affected by reduction in

image resolution. For a dataset of 168 natural images and 25 pink noise images, her

results showed not only that fixations in low-resolution can predict fixations in high-

resolution, but that 85% of accuracy can be achieved from a resolution as small as
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64×64 pixels. The strategy presented in this thesis is largely motivated by these results.

While there are fixation prediction methods that operate at a coarse-scale (e.g.,

Hou and Zhang (2007), Harel, Koch and Perona (2007), Seo and Milanfar (2009)), this

approach is mostly unexplored in salient region detection. A possible reason for this

is that, in contrast to fixation prediction, salient region detection requires accuracy at

the level of object contours, and consequently must rely on fine-scale processing. As

explained previously, instead of downscaling the image, salient region detectors often

adopt segmentation to reduce the number of image elements and alleviate computa-

tional burden. It will be demonstrated later in this thesis that it is possible to efficiently

leverage the advantages of low-resolution saliency estimation and still achieve accu-

rate results, without resorting to segmentation algorithms.
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4 AN EFFICIENT STRATEGY FOR ESTIMATION OF VISU-

ALLY SALIENT REGIONS IN IMAGES

This chapter presents the main contribution of the thesis, an efficient salient region de-

tection strategy based on joint upsampling of coarse-scale saliency estimates. The prob-

lem is mathematically stated to establish the notation (Section 4.1), and the proposed

approach is introduced through a general overview, which describes its steps and ra-

tionale (Section 4.2). Then, a pixel-level saliency formulation based on randomized

color distances is presented for coarse-scale estimation within the proposed strategy

(Section 4.3). While employing this formulation with the proposed strategy improves

over previous pixel-level approaches and is adequate for relatively simple scenes, it

suffers from scalability limitations common to all pixel-level approaches. Considering

this, a second saliency formulation is presented, which overcomes this limitation by

operating at a patch level, based on PCA reconstruction errors (Section 4.4). The chap-

ter closes with a description of implementation details, including choices of algorithms

and minor parameterization choices (Section 5.1.4).

4.1 PROBLEM STATEMENT

Let the function f : Ω → R3, with domain Ω = {(x, y) ⊂ Z2 | 0≤ x <W, 0≤ y< H},

define a color image with dimensions W × H. For each element in the domain Ω,

f defines a tuple in R3 encoding its value in an arbitrary color space. The problem

consists in defining a function s ◦ f : Ω → R, which maps each element (x, y) ∈ Ω to

a real value describing its perceptual dissimilarity to a subset Ωs ⊆ Ω, based on their

color values as defined by f . In other words, given a color image f , s describes the

perceptual dissimilarity of each of its elements with respect to a subset of the same

image. The function s defines a saliency map, and its construction, which is the main

subject of this work, is defined as the saliency detection problem.

4.2 OVERVIEW

The proposed strategy consists in two stages: coarse-scale saliency estimation and joint

upsampling. Operating at a coarse scale allows a drastic reduction in the amount of
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processed data. Additionally, due to the amount of redundancy in real-world images

(Section 2.2 – Low Dimensional Image Representation) and the scale of human visual at-

tention (Section 3.2 – Coarse-scale Saliency Estimation), it can be argued that it is also

the most theoretically adequate scale in which to process visual attention. While it

is known that low-resolution visual data is highly informative, capable of providing

enough information for tasks as complex as object and scene recognition (TORRALBA;

FERGUS; FREEMAN, 2008), the fact that salient region detection requires accurate ob-

ject contours remains.

Since the predominant approach for salient region detection consists in assign-

ing saliency to segments, achieving saliency maps with accurate object contours is not

an issue, given that segmentation decomposes the image into regions with bound-

aries that coincide with edges of the full-resolution input. In contrast to previous

approaches, the proposed strategy avoids segmentation in favor of edge-preserving

smoothing, which is significantly more efficient and can be employed for joint upsam-

pling of coarse-scale estimates. In this manner, it is possible to leverage the advantages

of both coarse-scale saliency estimation (i.e., reduction in computational cost, agree-

ment with experimental evidence, abstraction of unnecessary detail) and fine-scale

edge information (i.e., high accuracy). Since fine-scale information is used only when

absolutely required, most of the computation is performed in coarse scale, leading to

higher computational efficiency.

To illustrate the difference in efficiency between edge-preserving smoothing

and oversegmentation, Table 1 presents the average execution time of the Fast Global

Smoother (FGS) (MIN et al., 2014) — the algorithm employed for joint upsampling in

the proposed approach — and the three most common algorithms employed for over-

segmentation in salient region detection, considering the methods in the benchmark

by Borji et al. (2015): Mean shift (COMANICIU; MEER, 2002), Efficient Graph-Based Seg-

mentation (EGBS) (FELZENSZWALB; HUTTENLOCHER, 2004), Simple Linear Iterative

Clustering (SLIC) (ACHANTA et al., 2012). FGS performs in less than half of the execu-

tion time of SLIC, which is the fastest among the compared segmentation algorithms.

In the next sections, two saliency formulations are proposed for coarse-scale

estimation in the proposed strategy. The first one operates at a pixel level, based on

distances to a randomized color summary of the image. It will be shown that aspects
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Table 1: Execution time of image abstraction algorithms. FGS has the shortest execution time,
less than half of the time taken by the second fastest algorithm (SLIC). The algorithms were
executed using their default parameters, using an input image with 400×300 pixels, on an Intel
Core i7-860 2.80 GHz CPU with 4 GB RAM.

Method Mean shift EGBS SLIC FGS

Execution time (s) 0.90 0.13 0.11 0.04

of the saliency map that might be degraded by estimating on a smaller amount of

data are efficiently compensated by joint upsampling. This formulation presents im-

provements over previous similar approaches, but cannot overcome the scalability lim-

itations of exclusively pixel-level methods. Considering this, the second formulation

estimates saliency at a region-level, based on patch reconstruction error when pro-

jected on a PCA basis computed from the image boundaries. This approach enables

the aforementioned advantages of the proposed strategy, while scaling much better

than its pixel-level counterpart.

4.3 RANDOMIZED COLOR DISTANCE MAPS

Similarly to the work by Achanta et al. (2009), and following the color uniqueness hypoth-

esis, the pixel-level saliency formulation proposed in this thesis defines the saliency of

a pixel as the distance of its color to a color summary of the image. However, instead

of the average color of the image, a randomized subset of the image is adopted as

summary instead. In this manner, the saliency of a pixel p is defined as:

s(p) = ∑
pi ∈Ωs

‖ f (p)− f (pi)‖, (6)

where f is the input image and Ωs is a random subset of all image locations. The

subset Ωs is resampled each time Equation 6 is computed, and, similarly to previous

models (e.g., Achanta et al. (2009), Vikram, Tscherepanow and Wrede (2012), Cheng et

al. (2015)), f is assumed to have been converted from RGB to the CIELAB color space

before saliency estimation, to leverage its perceptual uniformity.

Equation 6 is almost identical to Equation 5, differing only in the adoption of a

randomly selected subset Ωs instead of all image locations Ω. This approach leverages

a principle of randomized algorithms, which states that it is possible to estimate fea-
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(a) (b) (c)

(f)(e)(d)

Figure 8: Effect of the subset size |Ωs| on the randomized color distance map. (a) Input image.
(b) Ground truth. (c) |Ωs| = 1. (d) |Ωs| = 10. (e) |Ωs| = 100. (f) |Ωs| = 1000. The regions
enclosed by blue squares are displayed zoomed-in for more detailed comparison. The output
presents a noisy aspect, which is attenuated for larger values of |Ωs| — however, the salient
region is already emphasized for a subset size as small as a single pixel.

tures of the entire population in a computationally inexpensive manner from a small

sample (MOTWANI; RAGHAVAN, 1996). For an image with n pixels, if Ωs is kept

small (i.e., |Ωs| � n), Equation 6 can be computed in O(|Ωs| n) ≈ O(n). As Figure 8

shows, this can be reasonably expected, since saliency regions are evident even using a

subset size as small as |Ωs| = 1, despite larger values being desirable to avoid a noisy

output. However, increasing |Ωs| is not an efficient approach, since execution time

increases in proportion to its value. As will be shown later, keeping |Ωs| small and

correcting the output using joint-upsampling is much more efficient. To distinguish

the result of Equation 6 from a saliency map, it is called a randomized color distance map.

Sampling Ωs randomly from the entire image is already a reasonably effec-

tive approach. However, its accuracy can be substantially improved by leveraging the

spatially-varying importance of image content. This is straightforward to incorporate

into the model. Boundary prior, the assumption that image boundaries are more likely
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(a) (b) (c) (d) (e)

Figure 9: Comparison of randomized color distance maps. (a) Input image. (b) Ground truth.
(c) Saliency estimation with |Ωs| = 1000, from full-resolution input. (d) Saliency estimation
with |Ωs| = 3, from coarse-scale (20% of full-resolution) input, unfiltered. (e) Saliency estima-
tion with |Ωs| = 3, from coarse-scale (20% of full-resolution) input, joint-upsampled with the
full-resolution input.

to belong to the background, can be incorporated into the model simply by restricting

the sampling of Ωs to the image boundaries. In other words, for each pixel location

pi = (xi, yi), instead of randomly sampling the coordinates xi and yi from the interval

[1 .. L], they are randomly sampled from [1 .. BL] ∪ [(L− BL) .. L], where L is the image

width for xi and height for yi, while B is the boundary ratio, a parameter that defines the

proportion of the image dimensions to adopt as boundary size for the prior. Adopting

B = 0.5 disregards boundary prior, since it indicates that two opposing boundaries

take half of the image each, setting the entire image as boundary.

A comparison of randomized color distance maps is shown in Figure 9. Com-

paring the results obtained with |Ωs| = 1000 on the full-resolution input and with

|Ωs| = 3 on the input downsampled to 20% of the full-resolution (Figures 9 (c) and (d),

respectively) show that the latter contains most of the information of the former, de-

spite presenting a noisy aspect. Joint upsampling the downsampled randomized color

distance map leads to a full resolution input, with even more homogeneous salient

regions than can be obtained by only increasing |Ωs|.

In addition to the higher quality output, the joint upsampling approach is
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much more efficient. The downsampled randomized color distance map alone was

computed in 0.03 seconds (on an Intel Core i7-860 2.80 GHz CPU with 4 GB RAM),

while computing it with joint upsampling takes on average 0.06 seconds. On the other

hand, adopting |Ωs| = 1000 on the full-resolution input took on average 17.29 sec-

onds, and the results are still inferior (e.g., the salient regions output are not as homo-

geneous). In order to reduce execution time, RGB to CIELAB conversion is performed

only on the downsampled image, rather than in the full-resolution image, since it is

only needed for perceptually uniform color distance computation. In this manner,

joint upsampling is guided by the edges of the RGB input image. While edges in the

CIELAB color space might be more perceptually meaningful, performing this conver-

sion on the full-resolution image increases execution time substantially, without any

perceptible increase in accuracy.

4.4 PATCH RECONSTRUCTION ERROR FROM A BOUNDARY BASIS

Similarly to the work by Li et al. (2013b), the region-level saliency formulation pro-

posed in this thesis defines the saliency of a patch as its reconstruction error from a

boundary basis. The input image is decomposed into non-overlapping patches, and

those that are located at the boundaries are selected to form a basis computed using

PCA (Figure 10). Each patch is then reconstructed using this basis, and their saliency is

estimated as the resulting reconstruction error, since a large error implies dissimilarity

to the boundary, which is equivalent to saliency under the boundary prior hypothesis.

More precisely, let f be a color image with W×H pixels. To account for coarse-

scale analysis, f is resized to L×L such that L < W, H. A set of V visual feature chan-

nels are extracted from the resized image, namely HSV and CIELAB color channels,

since they yielded the most accurate results. Only color features are used, following

the color uniqueness hypothesis. The resized image is decomposed into non-overlapping

k×k patches, which are unfolded into Vk2−dimensional vectors, accounting for all

feature channels. In this manner, if PB is the set of non-overlapping patches extracted

from the image boundaries, then its covariance matrix is computed as:

C = PBPT
B, (7)
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Input image Boundary
patches

Non-salient
patches

Salient
patches

Figure 10: Visual dissimilarity between salient and boundary patches. Boundary patches are
generally more similar to non-salient than salient patches. Thus, dissimilarity to boundary
patches can be adopted as a cue for saliency estimation. While the set of non-salient patches
contains all boundary patches for this simple example, this is not always the case and is not
an assumption of the model. Since the formulation is based on PCA reconstruction error, it
tolerates a certain amount of overlap between salient and boundary patches.

and subject to eigendecomposition:

CUB = UBΛB, (8)

which provides the matrices of eigenvectors UB and eigenvalues ΛB, corresponding

to a basis (i.e., principal components) of PB and the corresponding variances, respec-

tively. The saliency of a patch is then estimated as its reconstruction error, normalized

between [0 .. 255], when computed from this basis:

s(p) = ‖p−UBUT
Bp‖. (9)

Some parameters are fixed due to design choices, and are consequently not included

in the assessment in Chapter 5 (Experimental Results). The parameters and their val-

ues are: the image size for patch extraction L = 64 and patch size k = 8. The former is

motivated by experiments indicating that it is approximately the smallest resolution at

which human fixations become relatively consistent (JUDD; DURAND; TORRALBA,

2010), and technical results indicating its effectiveness in coarse-scale saliency estima-

tion (e.g., Hou and Zhang (2007), Seo and Milanfar (2009)). The latter is motivated by

efficiency, since PCA is computationally intensive on large patches.

These fixed parameter values constrain the initial saliency estimation to 8×8,

which is too coarse-grained for direct joint upsampling to full-resolution to yield ac-
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(a) (b) (c)

(d)

Figure 11: Multiscale joint upsampling of coarse-scale patch saliency estimation. (a) Input
image. (b) Ground truth. (c) Saliency map. (d) Intermediate saliency estimation steps — from
left to right: 8×8 patch reconstruction error, joint upsampling to 16×16, 32×32 and 64×64.
While the initial saliency estimate presents a relatively heterogeneous aspect, through gradual
joint upsampling it is efficiently processed into highly accurate and homogeneous regions.

curate results. Considering this, a multi-scale approach is adopted instead, in which

the output of joint upsampling at a scale is used as input for the next scale to achieve

gradual upsampling. This approach leads to more accurate results, and is in agreement

with previous work on edge-preserving smoothing (PARIS et al., 2009), which shows

that iterated filtering is more effective than simply adjusting range and smoothness pa-

rameters (see Section 2.3). An example of the process of multi-scale joint upsampling

of coarse-scale patch saliency estimation shown in Figure 11.
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5 EXPERIMENTAL RESULTS

This chapter presents an experimental assessment of the proposed strategy. The ex-

perimental setup is described (Section 5.1) and the parameters of both pixel-level and

patch-level saliency formulations is presented under the proposed strategy (Section

5.2). Then, a comparative assessment, both quantitative and qualitative, is presented

with respect to several state-of-the-art methods (Section 5.3).

5.1 SETUP

Assessment of saliency detection methods is made based on the quality of the saliency

maps they output and the computational effort they require. The quality of a saliency

map is measured by its accuracy with respect to a ground truth, which is an image

obtained from human labeling and considered as the ideal output. Computational ef-

fort is measured by the average execution time on a common computer system. Most

experiments were performed on an Intel Core i7-860 2.80 GHz CPU with 4 GB RAM,

running the Windows 7 Professional (32-bit) operating system. The single exception

is the parameter assessment for the joint upsampled randomized color distance map, pre-

sented in Section 5.2.1, which was performed on an Intel Xeon E5-2620 2.0 GHZ CPU

with 24 GB RAM, running the Windows 10 Professional (64-bit) operating system, due

to technical issues with the previous computer. Since the interest is in the behavior of

execution time as the parameters vary, and not its absolute value, the assessment is

unaffected by the difference in performance between the computer systems.

5.1.1 Metrics

Accuracy is measured in terms of precision, recall, and F-measure, which are standard

metrics in salient region detection assessment (BORJI et al., 2014). Precision and recall

are defined as:

Precision =
TP

TP + FP
, Recall =

TP
TP + FN

, (10)

where TP (true positives) are salient pixels correctly detected as such, FN (false nega-

tives) are salient pixels detected as background and FP (false positives) are background

pixels detected as salient. Since saliency maps are usually given in shades of gray,

and these metrics are for binary values, the maps are thresholded for each value in
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the [0 .. 255] interval. The accuracy of a method on an image is summarized as the

precision-recall curve for all thresholds in this interval, while the accuracy for an entire

dataset is summarized as the average precision-recall curve for all images.

Besides the precision-recall curve, accuracy can also be summarized by the F-

measure, which is the weighted harmonic mean of precision and recall, that is:

Fβ = (1 + β2)
Precision× Recall

(β2 × Precision) + Recall
, (11)

where β is used to emphasize the effect of precision or recall. Since many authors

consider precision more important than recall for saliency detection, it is common to

adopt β2 = 0.3 (e.g., Achanta et al. (2009), Li et al. (2013b), Cheng et al. (2015)). In order

to keep the experiments more easily comparable to the literature, this work also follows

this choice. While the precision-recall curve is computed for all thresholds in [0 .. 255],

F-measure is computed for a single adaptive threshold, twice the average saliency of the

image, following the widely adopted assessment approach by Achanta et al. (2009).

5.1.2 Datasets

The datasets adopted in the assessment are described as follows, along with sample

images of each (Figure 12).

• ASD: Also known as MSRA1K (ACHANTA et al., 2009), this dataset contains

1000 images sampled from the MSRA database (LIU et al., 2007), with their re-

spective contour-accurate ground truths. These ground truths were manually

extracted from bounding boxes labeled by three human subjects. The images

in this dataset were collected mostly from internet forums and search engines,

have approximately 400×300 pixels, and contain mostly a single, relatively large,

salient object.

• MSRA10K: Similarly to the ASD dataset, the images in this dataset were sampled

from the MSRA database, and had their contour-accurate ground truths extracted

in the same manner. However, this selection is substantially larger, containing

10,000 images with their respective ground truths (CHENG et al., 2015). Also

similarly to ASD, the images in this dataset have approximately 400×300 pixels

and contain a single, relatively large, salient object.



46

ASD MSRA10K

ECSSD DUT-OMRON

Figure 12: Examples of scenes depicted in the datasets, along with their ground truths. The
datasets are displayed, roughly, in order of increasing detection difficulty, from top-left to
bottom-right.

• ECSSD: This dataset contains 1000 images with their respective contour-accurate

ground truths. The images in this dataset have approximately 400×300 pix-

els, contain relatively complex background, and possibly multiple salient objects

(SHI et al., 2016). The ground truths were extracted from labeling data from five

human subjects.

• DUT-OMRON: This dataset contains 5,168 images with their respective ground
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truths. All images have approximately 400×300 pixels, and one or more salient

regions over relatively complex backgrounds (YANG et al., 2013). Contour-ac-

curate, bounding box, and fixation prediction ground truths are provided —

these were extracted from labeling and eye-tracking data from five human sub-

jects per image, from a group of 25 volunteers.

5.1.3 Compared methods

The proposed strategy was assessed and compared to seven other state-of-the-art sali-

ency detection methods, namely Spectral Residual (SR) (HOU; ZHANG, 2007), Fre-

quency-tuned (FT) (ACHANTA et al., 2009), Context-aware (CA) (GOFERMAN; ZELNIK-

MANOR; TAL, 2010), Random Center-surround (RCS) (VIKRAM; TSCHEREPANOW;

WREDE, 2012), PCA Saliency (PCAS) (MARGOLIN; TAL; ZELNIK-MANOR, 2013), Ab-

sorbing Markov Chain (AMC) (JIANG et al., 2013a), and Dense and Sparse Reconstruction

(DSR) (LI et al., 2013b). Besides relevance, the criteria for selection of these methods

were mostly number of citations (currently, SR, CA, and FT have between 1,700 and

2,700 citations on Google Scholar), similarity to the proposed approach (RCS is based

on random sampling, PCAS is based on a PCA subspace, and DSR is based on patch re-

construction), and performance (AMC is the fastest among the most accurate methods

in the benchmark by Borji et al. (2015)).

5.1.4 Implementation details

The proposed saliency estimation approaches were implemented in MATLAB, using

the Image Processing Toolbox (IPT). Due to efficiency and numerical stability concerns,

PCA was performed using Singular Value Decomposition (SVD), since it avoids the ex-

plicit computation of the covariance matrix (YANG et al., 2004). For edge-preserving

smoothing, the original C++ source code for the Fast Global Smoother from its authors

(MIN et al., 2014) was used, through a MEX interface. All saliency maps output using

the proposed strategy are subject to gamma correction with γ = 2. This is done merely

for aesthetic reasons and does not impact on accuracy or execution time in any percep-

tible manner, consequently, it is considered as an implementation detail and therefore

is not included as a parameter in the assessment.
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5.2 PARAMETER ASSESSMENT

5.2.1 Randomized color distance map

The randomized color distance map has three parameters: subset size |Ωs| ∈ [1 .. n],

downsize scale D ∈ (0, 1], and boundary ratio B ∈ (0, 0.5]. Each parameter was assessed

while keeping the remaining fixed at default values, to isolate their effects. For D and

B, the default values are D = 1.0 (i.e., no downsampling) and B = 0.5 (i.e., no bound-

ary ratio). Since there is no such obvious default value for |Ωs|, it was determined

based on its accuracy and execution time for several values. As the first row of Fig-

ure 13 shows, accuracy saturates for |Ωs| ≈ 40 across all datasets, however, increasing

|Ωs| to a value larger than approximately 10 is not cost-effective, since it improves ac-

curacy only marginally while increasing execution time significantly. Considering this,

|Ωs| = 10 is adopted as default subset size.

Downsize scale also has a significant impact on execution time, and conse-

quently must be set to the smallest value possible. As the second row of Figure 13

shows, accuracy remains relatively unchanged for most scales. The only sharp change

in accuracy occurs from D = 0.1 to D = 0.2 — from this value upwards accuracy im-

proves marginally (and not always monotonically), while execution time increases sig-

nificantly. Considering this fact, downsize scale is set as D = 0.2, since it is enough to

achieve most of the possible accuracy range on all datasets.

Boundary ratio does not impact execution time, since it merely defines the area

from which Ωs is sampled. As the third row of Figure 13 shows, adopting B = 0.5,

which is equivalent to disabling boundary ratio, results in the lowest accuracy. This

suggests that boundary prior always improves accuracy. Boundary ratio is set to

B = 0.2, since it results in the highest F-measure for all datasets.

5.2.2 Patch reconstruction from a boundary basis

The joint upsampled patch reconstruction approach has two parameters: set of joint

upsampling scales s ⊆ {16×16, 32×32, 64×64, 128×128}, and fraction of principal com-

ponents retained feig ∈ (0.1, 1.0]. The proposed approach joint upsamples patch saliency

estimates across several scales. However, it is not necessary to joint upsample to full-

resolution, nor it is necessary to include all intermediate scales. Considering this, due
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Figure 13: Parameter assessment — joint upsampled randomized color distance map. (a) Sub-
set size |Ωs| (D = 1.0, B = 0.5). Small values offer the best trade-off. For |Ωs| > 10, execution
time increases significantly with only marginal accuracy improvement. (b) Downsize scale D
(|Ωs| = 10, B = 0.5). The best trade-off occurs for D = 0.2. Larger values incur significant
computational cost for almost no accuracy improvement. (c) Boundary ratio B (|Ωs| = 10,
D = 1.0). Since any valid boundary ratio higher than 0.5 (i.e., no boundary prior) improves
accuracy, boundary prior is always advantageous. The best trade-off occurs for B = 0.2. The
computation was performed on an Intel Xeon E5-2620 2.0 GHZ CPU with 24 GB RAM.

to efficiency concerns, after the largest scale adopted for s, the output is uniformly up-

sampled to full-resolution using nearest neighbor interpolation. Note that s is specified

in number of pixels instead of a ratio (cf. parameter D in Section 5.2.1), since the coarse

patch estimation dimensions are known and fixed.

Table 2 shows an assessment of different scale combinations in terms of F-

measure and average execution time. As expected, iterating through intermediate

scales leads to higher accuracy than joint upsampling directly to the finest scale, as
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Table 2: Performance of joint upsampling for different scale combinations. F-measure (average
for feig ∈ {0.1, 0.3, 0.5, 0.7, 0.9}) was computed with β2 = 0.3, following Achanta et al. (2009).
For each number of scales, the most accurate combination is indicated in bold typeface. Entries
are listed from top to bottom in order of increasing number of combined scales. The computa-
tion was performed on an Intel Core i7-860 2.80 GHz CPU with 4GB RAM.

Scales F-measure Average exec.

time (ms)
16×16 32×32 64×64 128×128 ASD MSRA10K ECSSD DUT-OMRON

• ◦ ◦ ◦ 0.71 0.65 0.52 0.40 50.60

◦ • ◦ ◦ 0.72 0.67 0.53 0.40 50.60

◦ ◦ • ◦ 0.70 0.65 0.52 0.39 51.22

◦ ◦ ◦ • 0.67 0.63 0.51 0.37 53.22

• • ◦ ◦ 0.75 0.68 0.54 0.41 58.94

• ◦ • ◦ 0.75 0.69 0.54 0.41 59.38

• ◦ ◦ • 0.75 0.69 0.54 0.41 61.80

◦ • • ◦ 0.74 0.68 0.54 0.41 59.84

◦ • ◦ • 0.74 0.68 0.54 0.41 61.78

◦ ◦ • • 0.72 0.67 0.53 0.40 62.15

• • • ◦ 0.76 0.69 0.54 0.41 67.62

• • ◦ • 0.76 0.69 0.55 0.41 69.65

• ◦ • • 0.76 0.69 0.55 0.41 70.22

◦ • • • 0.75 0.69 0.55 0.41 71.32

• • • • 0.77 0.69 0.55 0.41 78.96

does including additional scales. It is worth noting that each additional scale leads

to an additional joint upsampling, which is the more significant step in terms of ex-

ecution time, as can be verified by the fact that the difference in execution time due

to increasing scale (e.g., single-scale from 32×32 to 64×64) is more subtle than due to

increase in number of scales (e.g., one to two scales). Moreover, including finer scales

does not necessarily improve accuracy. Interestingly, the best combinations for each

number of scales are consistent across datasets. These results suggest the most ade-

quate scale combinations according to the number allowed by the requirements of the

application. While the differences in execution time might seem small, they lead to sig-

nificantly different frame processing rates. In the comparative assessment, three scales

(s = {16×16, 32×32, 64×64}) are used, since with this number of scales the execution

time is significantly shorter than with four scales, while achieving almost the same

accuracy.
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Figure 14: F-measure (β2 = 0.3) for different fractions feig ∈ {0.1, 0.3, 0.5, 0.7, 0.9} kept from
the entire set of eigenvectors.

PCA allows reconstruction with minimum squared error from the eigenvectors

(i.e., principal components) associated with the largest eigenvalues (ABDI; WILLIAMS,

2010). In this manner, it is common to reduce data dimensionality by discarding some

of the eigenvectors according to some general rule-of-thumb (HALL; MARSHALL;

MARTIN, 2000). However there is no guarantee that these are adequate for perception-

oriented applications such as saliency estimation, in which perfect reconstruction is

not crucial. Considering this, the proposed approach was assessed by keeping differ-

ent fractions feig of the total eigenvectors. The results, presented in Figure 14 report the

F-measure for each number of scales, for which only the most accurate combinations

were chosen, as described in Table 2.

The fraction of eigenvalues that results in the highest accuracy is consistently

feig = 0.5, across both datasets and number of scales. The exception is on the ASD

dataset, in which accuracy is slightly higher for feig = 0.7. However, this advantage

is marginal and disappears as the number of scales increases. The results are consis-
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Table 3: F-measure (β2 = 0.3) and average execution time (for a 400×300 image) of the com-
pared methods. The three most accurate methods in each dataset are indicated in bold. Pa-
rameters for JSAL-pixel: |Ωs|= 10, D = 0.2, B= 0.2. Parameters for JSAL-patch: feig = 0.5, s is
set as the most accurate combination for each number of scales ns according to Table 2. The
computation was performed on an Intel Core i7-860 2.80 GHz CPU with 4GB RAM.

Method
Average exec.

time (s)
F-measure

ASD MSRA10K ECSSD DUT-OMRON

JSAL-patch

ns = 1 0.05 0.75 0.71 0.57 0.45

ns = 2 0.06 0.79 0.74 0.59 0.47

ns = 3 0.07 0.81 0.75 0.60 0.47

ns = 4 0.08 0.81 0.76 0.60 0.47

JSAL-pixel 0.06 0.79 0.70 0.48 0.40

DSR 5.67 0.85 0.81 0.69 0.53

AMC 0.18 0.89 0.84 0.70 0.53

PCAS 5.49 0.80 0.75 0.58 0.46

RCS 0.73 0.66 0.62 0.52 0.39

CA 38.41 0.56 0.58 0.43 0.36

FT 0.06 0.67 0.59 0.38 0.31

SR 0.01 0.46 0.49 0.22 0.19

tent with the observation by previous authors (HYVÄRINEN; HURRI; HOYER, 2009,

p. 104) that, for natural images, principal components associated with low variance

encode mostly noise. Considering this, the fraction feig = 0.5 is adopted in the com-

parative assessment.

5.3 COMPARISON TO THE STATE-OF-THE-ART

5.3.1 Quantitative assessment

The precision-recall performance of the proposed strategy (referred to as JSAL in the

assessment), with both pixel-level (randomized color distance map) and patch-level

(patch reconstruction error from a boundary basis) saliency estimation, is presented in

Figure 15, along with that of seven state-of-the-art methods, for comparison. The F-

measure of all compared methods as well as their average execution time is presented

in Table 3.

Overall, the proposed method presents competitive accuracy to the best per-
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Figure 15: Precision-recall curves for the compared methods. Parameters for JSAL-pixel:
|Ωs|= 10, D = 0.2, B= 0.2. Parameters for JSAL-patch: s= {16×16, 32×32, 64×64}, feig = 0.5.

forming methods in the state-of-the-art. JSAL-pixel presents superior performance to

all pixel-level methods (i.e., RCS, CA, FT, SR), except RCS, which is more accurate in

the ECSSD and DUT-OMRON datasets. This might be due to its relatively more local

estimation approach of RCS compared to other pixel-level approaches, which can re-

sult in increased robustness to more complex scenes, such as those in the ECSSD and

DUT-OMRON datasets. However, this comes at the cost of an execution time more

than 10 times longer than JSAL-pixel (Table 3). The decrease in accuracy of all pixel-

level methods from the ASD to the MSRA10K dataset is already expected, as Cheng et

al. (2015) reported experiments suggesting that pixel-level methods tend to scale worse

than region-based methods.

While JSAL-pixel becomes less competitive in the more complex ECSSD and

DUT-OMRON datasets, JSAL-patch is consistently competitive on all datasets, pre-
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Figure 16: Trade-off between accuracy (F-measure, β2 = 0.3) and execution time. Left: All
compared methods. Right: Methods that perform under one second per 400×300 image. The
closer to the top left the better. The F-measure indicated accounts for the average across all
datasets (i.e., ASD, MSRA10K, ECSSD, DUT-OMRON). The red line indicates the approximate
time limit for bottom-up visual attention by the human visual system according to Theeuwes
(2010). The computation was performed on an Intel Core i7-860 2.80 GHz CPU with 4GB RAM.

senting one of the three highest accuracies on all of them (Table 3). This is largely due

to its region-level approach, which estimates saliency patch-wise, and is consequently

not subject to the scalability limitations of pixel-level methods. The accuracy of JSAL-

patch is moderately lower than AMC and DSR, but in terms of execution time, it is 2.5

and 81 times faster, respectively. The superior efficiency over DSR is particularly signif-

icant, considering the similarity between the approaches. Compared to PCAS, which

presents the precision-recall curve most similar to JSAL-patch, the proposed approach

also has a large efficiency advantage — it executes 78 times faster.

Two methods present execution time shorter or equivalent to the JSAL-pixel

and JSAL-patch: SR and FT. SR is the fastest method among all assessed (0.01 second

per 400×300 image), which is mainly because it is estimated at a coarse scale (∼64×64)

and not subject to any post-processing besides Gaussian filtering. This severely com-

promises accuracy for salient region detection, and consequently results in the lowest

accuracy on all datasets, by a large margin. FT presents execution time equal to JSAL-

pixel and 0.01 second shorter than JSAL-patch. However, while it can be argued that

its accuracy is almost competitive in the ASD and MSRA10K datasets, it does not scale

well to more complex scenes, presenting the second lowest accuracy on the ECSSD and

DUT-OMRON datasets.

Analyzing the precision-recall curves alone might be misleading with respect
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to the quality of the methods. While the F-measure and execution time of the com-

pared methods are presented in Table 3, a graphical summarization of the trade-off

between accuracy and efficiency can reveal these qualities more explicitly. Figure 16

presents such representation in a scatterplot, in which points closer to the top left of

the plot present better trade-off. The proposed methods, along with AMC, achieve the

best trade-offs, with JSAL-patch presenting an arguably equivalent trade-off to AMC,

since it presents a modest decrease in accuracy while executing in less than half of

its execution time. Despite the lower precision-recall curves of JSAL-pixel on the two

harder datasets (ECSSD and DUT-OMRON), considering the averaged accuracy on all

datasets and execution time, it clearly presents one of the best trade-offs — the best

among the pixel-based methods.

The rule-of-thumb presented in the motivation of this thesis, regarding the

time limit for bottom-up visual attention in the human visual system (∼150 ms, see

Section 1.2, Figure 2), is revisited in Figure 16 (right) to give a better perspective on the

adequacy of the time frame required by the compared methods. Considering the meth-

ods with highest accuracy, while AMC manages to perform close to this time frame,

DSR and PCAS take several seconds to process a single image and do not present

a competitive trade-off. JSAL-patch and JSAL-pixel are the most accurate methods

within the indicated time limit, corroborating the thesis statement that the proposed

strategy is capable of effective and efficient visual saliency detection.

5.3.2 Qualitative assessment

Examples of saliency maps computed from the compared methods are presented in

Figures 17 and 18, for comparison. As mentioned previously, in general, methods that

operate exclusively at pixel-level perform reasonably well in simple scenes, but do not

scale well as complexity increases. This can be verified, for instance, in the saliency

maps presented in the third column of Figure 17 and second column of Figure 18. In

the first case, the input image depicts a relatively simple scene, with predominantly

homogeneous background, and a salient region with very distinctive colors enclosed

by unambiguous edges. The pixel-level methods assessed, namely SR, FT, CA, RCS,

and JSAL-pixel, are capable of detecting the salient region reasonably well. On the sec-

ond case, however, the input image is more cluttered, and pixel-level methods output
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saliency maps that are significantly less accurate.

The lack of accuracy on more complex scenes can be attributed to some rela-

tively consistent qualitative aspects of the output for each method. For instance, CA

and SR overemphasize edges, something that is more severe in the latter case, since

it operates in a coarser scale. FT emphasizes undesired textures, besides detecting

boundaries as salient in several cases. RCS, despite scaling better than other pixel-

level methods on the ECSSD and DUT-OMRON datasets, outputs low-quality saliency

maps, with blurry and inhomogeneous regions. It is possible to notice that its supe-

rior scalability compared to other pixel-level methods is mostly a result of its heavily

center-biased output, which emphasizes the center of the saliency map almost irre-

gardless of the object boundaries. In some cases RCS even emphasizes the content in

the center of the image except the salient region (e.g., second and seventh columns of

Figure 18). Most of the aforementioned aspects do not occur in the output of JSAL-

pixel. It does not emphasize edges, small-scale textures, or boundary distractors. The

first two are due to joint-upsampling, which “spreads” the coarse-scale estimate inside

region boundaries. The latter is due to the boundary prior, which allows modeling the

boundary as background in an implicit manner, i.e., when selecting color samples. In

this manner, it is possible to avoid heavily biasing towards the center, as RCS does.

The limitations of pixel-level methods can be at least mitigated by region-level

analysis. While this is evident from the substantially higher accuracy presented by

the region-level methods (i.e., DSR, AMC, PCAS, JSAL-patch) with respect to pixel-

level methods (Figure 15), it is even more evident through quantitative analysis. For

instance, in the second and fifth columns of Figure 18, it can be noticed that the output

of region-level methods is much more homogeneous. This reduction in “visual clutter”

reduces the detection of background regions as salient and improves the uniformity of

the detection inside salient regions.

Among region-level methods, PCAS presents the most heterogeneous output,

besides emphasizing edges. These are characteristics of pixel-level methods, and oc-

cur because PCAS outputs a combination of both pixel-level and region-level saliency

maps. AMC outputs homogeneous and accurate saliency maps, however, since it is

formulated as a graphical model based on propagation from the boundary towards

the center of the image, it tends to emphasize the center of the image when the transi-
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tion from the boundaries is smooth (e.g. third and fifth columns of Figure 17, and third

column of Figure 18). DSR also outputs homogeneous and accurate saliency maps,

however, since it employs explicit center-bias and multiscale superpixel decomposi-

tion, it might output artifacts on object boundaries (e.g., first columns of Figures 17

and 18), create inexistent texture (e.g., fourth column of Figure 17), or overemphasize

the center of the image (e.g., third column of Figure 18).

In contrast to these region-level methods, JSAL-patch does not rely on super-

pixel segmentation, but still achieves not only competitive accuracy, but also saliency

maps with comparable, and in several cases superior, quality. Despite not being as ac-

curate as AMC and DSR, JSAL-patch is robust to some of their limitations. For instance,

by adopting a boundary prior instead of an explicit center-bias, it avoids overempha-

sizing the center of the image. Additionally, PCAS, AMC, and DSR adopt the SLIC

algorithm for segmentation, which outputs a fixed number of uniformly spaced seg-

ments that can lead to the artifacts (e.g., DSR in the first columns of Figure 17 and 18)

and mosaic-like output (e.g., AMC in third and fifth columns in Figure 17). Since JSAL-

patch avoids superpixel segmentation in favor of joint upsampling, content is simply

smoothed inside edges and such disadvantages are avoided. Moreover, by adopting

a simpler model, JSAL-patch provides better detection in some cases that might con-

fuse more complex algorithms (e.g., AMC and DSR in the fourth and fifth columns in

Figure 17).
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Figure 17: Saliency maps computed from the compared methods. Except for JSAL-pixel and
FT, all pixel-level methods (i.e., RCS, CA, SR) overemphasize borders or small regions. On
some cases, small details (fourth column) lead even region-level methods to output inaccurate
saliency maps — for this image, JSAL-patch is the only one to detect the salient region correctly.
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Figure 18: Examples of joint upsampled patch saliency estimates (continued). JSAL-pixel out-
puts cleaner saliency maps than other pixel-level methods, while JSAL-patch manages to cor-
rectly detect even some challenging cases, in which other region-level methods fail (third col-
umn) or overemphasize details (fifth column).
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6 CONCLUSIONS

This thesis began with the motivation that, despite recent advances, most saliency de-

tection methods are currently being designed only to perform accurately, with few

concerns regarding efficiency. In bottom-up visual attention systems, computational

efficiency is paramount. This mechanism is assumed to precede most processes in the

visual system, such that inefficiency in its operation can hinder the operation of later

stages.

However, efficiency alone is clearly not enough. Accuracy is also necessary,

since there is no point in employing an inaccurate process, regardless of how efficient

it is. Taking this into account, and based on the principles presented in Section 2.2

(Low-dimensional Image Representation), as well as experimental results on human vi-

sual attention (INTRILIGATOR; CAVANAGH, 2001), it was argued that estimation of

visual saliency in coarse-scale can be not only efficient, due to the reduced amount of

data compared to the full-resolution input, but also the most adequate scale for this

purpose. However, coarse-scale estimation alone is not compatible with the accuracy

requirements of saliency maps for salient region detection. Thus, an efficient joint up-

sampling approach was proposed, which enables leveraging both the advantages of

coarse-scale saliency estimation (i.e., efficiency, agreement with experimental evidence,

abstraction of unnecessary detail) and fine-scale edge information (i.e., high accuracy).

This approach was designed to provide good trade-off between accuracy and effi-

ciency, which was demonstrated by a comparative assessment with other seven state-

of-the-art methods on four major datasets. Two saliency formulations were proposed

for computation of coarse-scale estimates in the presented strategy, one operating at

pixel-level and the other at patch-level, both achieving accuracy and efficiency among

the top performing methods assessed. The former presented simple implementation

and fine-grained adjustability, being an adequate choice for applications that require

short execution time and are based on relatively simple scenes (e.g., Lie et al. (2016), Lie

et al. (2017)). The latter presented superior accuracy and scalability, as demonstrated

by its performance among the three most accurate on all datasets, and its trade-off be-

tween accuracy and efficiency, which was the second best overall and the best within

the time frame expected for bottom-up attention by the human visual system.
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During the development of this thesis, several questions and improvements

ideas appeared. Some of them present potential for future work and are summarized

as follows:

• Spatially-variant resolution. In this thesis, coarse-scale was computed simply as

uniform downsampling — this is not biologically accurate. It is known that the

acuity of the primate retina is not uniform, its higher is in the center and decays

rapidly towards the periphery (KANDEL; SCHWARTZ; JESSELL, 1995). This

suggests that exploring a spatially-varying resolution approach might be inter-

esting, not only for increased biological-plausibility, but for analysis at a possibly

more appropriate level of detail. This approach has been employed in several

computer vision applications (BOLDUC; LEVINE, 1998), including visual atten-

tion (TRAVER; BERNARDINO, 2010).

• Scene decomposition and pixel-level estimation. Similarly to previous work

(CHENG et al., 2015), the experiments in this thesis demonstrated that pixel-

level methods do not scale to more complex scenes. However, some pixel-level

approaches achieved high accuracy on simpler datasets, while performing with

remarkably short execution time. This suggests that if computationally efficient

methods for decomposing an image into simpler scenes are available, it might be

possible to leverage pixel-level methods as efficient components in more elabo-

rate visual attention models. This is a promising approach, considering that re-

cent approaches for estimation of ”objectness” of image regions, which could be

used for image decomposition, have reported impressive processing rates (e.g.,

300 fps by Cheng et al. (2014)).

• Alternative to simple PCA subspace. Based on its simplicity and effectiveness in

previous work, the proposed patch-level saliency estimation approach operated

on a PCA subspace, which was computed from simple Singular Value Decomposi-

tion (SVD). There are very elegant approximation strategies that are more efficient

(HALKO; MARTINSSON; TROPP, 2011). While such approximations are inter-

esting from a numerical point of view, they could be further investigated under

the context of the tolerance of visual perception to inaccuracies.
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